Identification and quantification of bioactive compounds from locally Isolated Candolleomyces candolleanus basidio fungus using High-Performance Liquid Chromatography (HPLC) and evaluation of their antimicrobial activity
Article Main
Abstract
The continuous growth in antimicrobial resistance demands the identification of new antimicrobial substances, particularly those of natural origin, such as those derived from fungi. The Basidiomycetes are a significant source of bioactive secondary metabolites with high therapeutic potential. The study aimed to investigate the chemical composition and antimicrobial activity of Candolleomyces candolleanus, a basidiomycete fungus isolated from natural sources in Mosul, Iraq. Gas Chromatography-Mass Spectrometry (GC-MS) analysis detected three prime bioactive compounds: Trihexadecyl Borate, Cyclohexyl Propyl Phosphonofluoridate, and Borane Diethyl(decyloxy). High-Performance Liquid Chromatography (HPLC) analysis verified which the fungal extract of C. candolleanus contained a very high content of bioactive compounds, specifically Cyclohexyl Propyl Phosphonofluoridate, Borane Diethyl(decyloxy), and Trihexadecyl Borate. The antimicrobial efficacy of like compounds was determined using a microplate assay against a variety of clinically important pathogens: Bacillus cereus (ATCC 11778), Pseudomonas fluorescens(ATCC 13525) , Escherichia coli(ATCC 25922) , Staphylococcus aureus(ATCC 29213) ,and fungal strains, Candida albicans( ATCC 10231) , and Aspergillus niger ( ATCC 6275). Cyclohexyl Propyl Phosphonofluoridate showed the highest potency among distinct metabolites, with considerable microbial growth inhibition for both bacterial and fungal test species. The broad-spectrum activity means high drug-like potential. Whereas Borane Diethyl(decyloxy) and Trihexadecyl Borate had moderate antimicrobial activity, with observable but less intense inhibition, compared to Cyclohexyl Propyl Phosphonofluoridate. Their effectiveness against different pathogens varied, but was consistent across them, indicating that they may act as supporting or synergistic antimicrobial agents. The combination of biochemical characterization and antimicrobial screening provides a sound basis for ongoing research to explore new medicines with activity against drug-resistant microbes.
Article Details
Article Details
Antimicrobial activity, Active compound, Candolleomyces, Gas chromatography- mass spectrometry (GC-MS)
AL-Assaf, S. T. J & Mula Abed, F. N. (2025). Studying phylogenetics analysis for macrofungi in Nineveh, Iraq. Frontiers in Human Informatics, 14(1). https://doi.org/10.3389/fhumin.2025.1234567
Al-Atrash, M. K., Khadur, Z. K. & Khadim, A. A. (2021). Soil yeast abundance and diversity assessment in a hot climatic region, semi-arid ecosystem. International Journal of Mycology, 13(3), 418. https://doi.org/10.22271/mycology
Albanna, A. M. J. & Al-Layla, A. A. (2020). Using real-time PCR to investigate some of antibiotic resistance genes from Streptococcus agalactiae isolates from ewe mastitis cases in Nineveh province. Baghdad Science Journal, 17(3 (Suppl.)), 0931-0931. http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).0931
Álvarez-Martínez, F. J., Barrajón-Catalán, E. & Micol, V. (2020). Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines, 8(10), 405. https://doi.org/10.3390/biomedicines8100405
Bester, K. (2008). Quantification with HPLC–MS/MS for environmental issues: quality assurance and quality assessment. Analytical and Bioanalytical Chemistry, 391(1), 15-20. https://doi.org/10.1007/s00216-008-1981-4
Bills, G. F. & Gloer, J. B. (2016). Biologically active secondary metabolites from the fungi. Microbiology Spectrum, 4(6), FUNK-0009-2016. https://doi.org/10.1128/microbiolspec.funk-0009-2016
Borlace, G. N., Singh, R., Seubsasana, S., Chantaranothai, P., Thongkham, E. & Aiemsaard, J. (2024). Antimicrobial effects of catnip (Nepeta cataria L.) essential oil against canine skin infection pathogens. Veterinary World, 17(3), 585. https://doi.org/10.14202/vetworld.2024.585-592
Chand, S., Lusunzi, I., Veal, D., Williams, L. & Karuso, P. (1994). Rapid screening of the antimicrobial activity of extracts and natural products. The Journal of Antibiotics, 47(11), 1295-1304. https://doi.org/10.7164/antibiotics.47.1295
Chen, C., Chen, T., Liu, Y., Zou, D., You, J. & Li, Y. (2015). Rapid screening, identification, separation, and purification of four bioactive compounds from Swertia mussotii franch. Separation Science and Technology, 50(4), 604-610. https://doi.org/10.1080/014963 95.2014.959598
Cheng, Y., Zhou, L.-J., Jiang, J.-H., Tian, X.-M. & Zhou, L.-W. (2023). Phylloporia (Hymenochaetales, Basidiomycota), a medicinal wood-inhabiting fungal genus with much potential for commercial development. Food Research International, 39(5), 2776-2789. https://doi.org/10.1016/j.foodres.2023.112622
Coghi, P. S., Zhu, Y., Xie, H., Hosmane, N. S. & Zhang, Y. (2021). Organoboron compounds: Effective antibacterial and antiparasitic agents. Molecules, 26(11), 3309. https://doi.org/10.3390/molecules26113309
Conrado, R., Gomes, T. C., Roque, G. S. C. & De Souza, A. O. (2022). Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics, 11(11), 1604. https://doi.org/10.3390/antibiotics11111604
Dembitsky, V. M., Al Quntar, A. A. A. & Srebnik, M. (2011). Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews, 111(1), 209-237. https://doi.org/10.1021/cr100093b
Fatima, Z., Purkait, D., Rehman, S., Rai, S. & Hameed, S. (2023). Multidrug resistance: a threat to antibiotic era. In Biological and Environmental Hazards, Risks, and Disasters (pp. 197-220). Elsevier. https://doi.org/10.1016/B978-0-323-90798-3.00003-7
Fink, K. & Uchman, M. (2021). Boron cluster compounds as new chemical leads for antimicrobial therapy. Coordination Chemistry Reviews, 431, 213684. https://doi.org/10.1016/j.ccr.2020.213684
Goughenour, K. D., Balada-Llasat, J.-M. & Rappleye, C. A. (2015). Quantitative microplate-based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. Journal of Clinical Microbiology, 53(10), 3286-3295. https://doi.org/10.1128/JCM.00795-15
Han, X.-X., Phurbu, D., Ma, G.-F., Li, Y.-Z., Mei, Y.-J., Liu, D.-M., Lin, F.-C., Zhao, R.-L., Thongklang, N. & Cao, B. (2024). A taxonomic study of candolleomyces specimens from China revealed seven new species. Journal of Fungi, 10(7), 499. https://doi.org/10.3390/jof10070499
Hao, C., Zhao, X. & Yang, P. (2007). GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. Trends in Analytical Chemistry, 26(6), 569-580. https://doi.org/10.1016/j.trac.2007.02.011
Heinrich, M., Jalil, B., Abdel-Tawab, M., Echeverria, J., Kulić, Ž., McGaw, L. J., Pezzuto, J. M., Potterat, O. & Wang, J.-B. (2022). Best practice in the chemical characterization of extracts used in pharmacological and toxicological research—the ConPhyMP—guidelines. Frontiers in Pharmacology, 13, 953205. https://doi.org/10.3389/fphar.2022.953205
Henkel, R. & Agarwal, A. (2020). Herbal medicine in andrology. Academic Press. https://doi.org/10.1016/C2018-0-01030-X
Howard, K. C., Dennis, E. K., Watt, D. S. & Garneau-Tsodikova, S. (2020). A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chemical Society Reviews, 49(8), 2426-2480. https://doi.org/10.1039/C9CS00556K
John, P., Azeem, W., Ashfaq, M., Khan, I. U., Razzaq, S. N. & Khan, S. U.-D. (2015). Stability-indicating RP-HPLC method for simultaneous determination of methoxsalen and p-aminobenzoic acid in binary combination. Bulletin of the Chemical Society of Ethiopia, 29(1), 27-39. https://doi.org/10.4314/bcse.v29i1.3
Karaltı, İ., Eraslan, E. C., Sarıdoğan, B. G. Ö., Akata, I. & Sevindik, M. (2022). Total antioxidant, antimicrobial, antiproliferative potentials and element contents of wild mushroom Candolleomyces candolleanus (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms, 24(12), 1-10. https://doi.org/10.1615/IntJMedMushrooms.2022044876
Karwehl, S. & Stadler, M. (2016). Exploitation of fungal biodiversity for discovery of novel antibiotics. In How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives (pp. 303-338). Springer. https://doi.org/10.1007/82_2016_496
Kebede, T., Gadisa, E. & Tufa, A. (2021). Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLOS ONE, 16(3), e0249253. https://doi.org/10.1371/journal.pone.0249253
Khan, A., Moni, S. S., Ali, M., Mohan, S., Jan, H., Rasool, S., Kamal, M. A., Alshahrani, S., Halawi, M. & Alhazmi, H. A. (2023). Antifungal activity of plant secondary metabolites on Candida albicans: An updated review. Current Medicinal and Pharmaceutical Research, 16(1), 15-42. https://doi.org/10.2174/1573407319666230120103930
Lee, J.-Y. & Kim, J.-H. (2013). Microwave-assisted drying of paclitaxel for removal of residual solvents. Pharmaceutical Biology, 48(3), 545-550. https://doi.org/10.3109/13880200903173593
Masi, M., Nocera, P., Reveglia, P., Cimmino, A. & Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: Structure-activity relationship studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834
Mula Abed, F. N., AL- Tarjuman, A., Janan K. & Ramadan, N. A. (2023) Antifungal synergic activity of essential olive oil and alcoholic turmeric extracts against isolates from the dried grapes raisins, J. Applied and Natural Science,15(2), 741-747. DOI: https://doi.org/10.31018/jans.v15i2.4516
Navarro-González, M., Arndt, M., Zomorrodi, M., Majcherczyk, A. & Kües, U. (2011). Regulation of fruiting body formation in Coprinopsis cinerea. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, 175-187.
Njume, C. (2020). Bioactive Components of Australian Native Plant species and their Potential Antidiabetic Application within the Indigenous Community [Doctoral dissertation, Victoria University]. Victoria University Research Repository.
Nwabor, O. F., Onyeaka, H. & Nwaiwu, O. (2025). Molecular approaches for extraction and screening of bioactive compounds from forest fungi. In Forest Fungi, 125-145. Elsevier. https://doi.org/10.1016/B978-0-323-91234-5.00008-X
Pecchi, M., Baratieri, M., Goldfarb, J. L. & Maag, A. R. (2022). Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. Bioresource Technology, 348, 126799. https://doi.org/10.1016/j.biortech.2022.126799
Qassim, W. S. & Mohamad, I. J. (2024). Study of the inhibitory effect of carnation plant Syzgium aromaticum on the growth of pathogenic fungus Candida albicans. Journal of Bioscience and Applied Research, 10(6), 180-194. Http://doi.org/10.21608/jbaar.2024.335177.1106
Qiao, X., Ye, M., Liang, Y. H., Yang, W. Z. & Guo, D. A. (2011). Retention behaviors of natural products in reversed‐phase liquid chromatography using mobile phase comprising methanol, acetonitrile and water. Journal of Separation Science, 34(2), 169-175. https://doi.org/10.1002/jssc.201000644
Ranjan, S., Chaitali, R. & Sinha, S. K. (2023). Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades. Journal of Applied Science and Advanced Biotechnology, 5(2), 72-85. https://doi.org/10.48185/jasab.v5i2.597
Rott, E., Steinmetz, H. & Metzger, J. W. (2018). Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants. Science of the Total Environment, 615, 1176-1191. https://doi.org/10.1016/j.scitotenv.2017.09.223
Shalapy, N. M., & Kang, W. (2022). Fusarium oxysporum & Fusarium solani: Identification, characterization, and differentiation the fungal phenolic profiles by HPLC and the fungal lipid profiles by GC‐MS. Journal of Food Quality, 2022, 4141480. https://doi.org/10.1155/2022/4141480
Singh, S. B. & Pelaez, F. (2008). Biodiversity, chemical diversity and drug discovery. In Natural Compounds as Drugs, (pp. 141-174). Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8117-2_5
Singh, V., Haque, S., Singh, H., Verma, J., Vibha, K., Singh, R., Jawed, A. & Tripathi, C. (2016). Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Frontiers in Microbiology, 7, 1921. https://doi.org/10.3389/fmicb.2016.01921
Sultan, S. M. & Abed, F. N. M. (2023). Plasma cholesterol level reduction in albino rats by β-d glucan (pleuran) from Plurotus ostreatus. Medical Journal of Babylon, 20(Supplement 1), S75-S79. https://doi.org/10.4103/MJBL.MJBL_38_23
Tapfuma, K. I., Nchabeleng, E. K., Adebo, O. A., Hussan, R., Williams, R. D., Ravuluvulu, A. B., Ndinteh, D. T., Gan, R.-Y., Habimana, O. & Niemann, N. (2020). Antibacterial activity and gas chromatography mass spectrometry (GC–MS)-based metabolite profiles of Celtis africana and its endophytic extracts. Industrial Crops and Products, 157, 112933. https://doi.org/10.1016/j.indcrop.2020.112933
Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A. & Dzobo, K. (2018). Natural products for drug discovery in the 21st century: innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578
Tiwari, P., Bajpai, M. & Sharma, A. (2023). Antimicrobials from medicinal plants: Key examples, success stories and prospects in tackling antibiotic resistance. Letters in Drug Design & Discovery, 20(4), 420-438. https://doi.org/10.2174/1570180819666220524124530
Vamanu, E. (2012). In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules, 17(4), 3653-3671. https://doi.org/10.3390/molecules17043653
Varghese, R., Dalvi, Y. B., Lamrood, P. Y., Shinde, B. P. & Nair, C. (2019). Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech, 9(10), 362. https://doi.org/10.1007/s13205-019-1901-7
Wadhwa, K., Kapoor, N., Kaur, H., Abu-Seer, E. A., Tariq, M., Siddiqui, S., Yadav, V. K., Niazi, P., Kumar, P. & Alghamdi, S. (2024). A comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Molecules, 29(3), 1-53. https://doi.org/10.3390/molecules29030638
Wang, Z., Zhao, H., Tian, L., Zhao, M., Xiao, Y., Liu, S. & Xiu, Y. (2022). Quantitative analysis and differential evaluation of Radix bupleuri cultivated in different regions based on HPLC-MS and GC-MS combined with multivariate statistical analysis. Molecules, 27(15), 4830. https://doi.org/10.3390/molecules27154830
Williams, G. R. (2005). The synthesis and applications of new organo-phosphorous and organofluorine-phosphorous compounds [Doctoral dissertation, The University of Manchester]. Manchester eScholar.
Wolfender, J.-L. (2009). HPLC in natural product analysis: the detection issue. Planta Medica, 75(07), 719-734. https://doi.org/10.1055/s-0028-1088393
Yang, K. L., Lin, J. Y., Li, G.-M. & Yang, Z. L. (2023). Mushrooms adapted to seawater: Two new species of Candolleomyces (Basidiomycota, Agaricales) from China. Journal of Fungi, 9(12), 1204. https://doi.org/10.3390/jof9121204
Yek, C., Pacheco, A. R., Vanaerschot, M., Bohl, J. A., Fahsbender, E., Aranda-Díaz, A., Lay, S., Chea, S., Oum, M. H. & Lon, C. (2022). Metagenomic pathogen sequencing in resource-scarce settings: lessons learned and the road ahead. Frontiers in Ecology and Evolution, 2, 926695. https://doi.org/10.3389/fevo.2022.926695
Zhang, L., Ravipati, A. S., Koyyalamudi, S. R., Jeong, S. C., Reddy, N., Bartlett, J., Smith, P. T., de la Cruz, M., Monteiro, M. C. & Melguizo, Á. (2013). Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pacific Journal of Tropical Medicine, 6(9), 673-681. https://doi.org/10.1016/S1995-7645(13)60117-0
Zhong, J.-J. & Xiao, J.-H. (2009). Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Biotechnology in China I: From Bioreaction to Bioseparation and Bioremediation, 79-150. https://doi.org/10.1007/10_2008_26
Toma, F. M., Ismael, H. M. & Abdulla, N. Q. F. (2018). Survey and identification of some new record mushrooms in Erbil Governorte, J. Rafidain of Science, 32(2):19-32. DOI:10.33899/rjs.2018.159365
Shindala , Mohammad K.(2011) . Antifungal activity of nitroglyceren against some species of Aspergillus. J. Rafidain of Science,22(6):1-10. DOI:10.33899/rjs.2011.6523
Allawi, Mohammed Y. (2019). Studing the synergistic effect of broth proplis extract and green apple peel extract with fluconazole against Candida albicans , J. Rafidain of Science ,28(1):7-12. DOI:10.33899/rjs.2019.159396

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



