##plugins.themes.bootstrap3.article.main##

Monika Monika Anita Dua Sandeep Kumar Sanjay Sharma Sanjeev Gupta Ashwani Mittal

Abstract

Over the past few years, the biological properties of garlic have been utilized as an attractive natural alternative to many
therapeutic drugs. The biological effects of garlic have been ascribed to organosulfur compounds, secondary metabolites
derived from amino acids. The present study aimed to investigate the extracts of a novel garlic variety (Hisar garlic 17) after processing it as fresh, dry, heated, and aged in different solvents and then analyzed with highly sensitive and rapid technique i.e., High resolution liquid chromatograph mass spectrometer quadrupole time of flight (HR-LCMS-QTOF) Mass spectrometer to study the amino acids and organosulfur compounds. 47 amino acids and 11 organosulfur compounds were detected out of which 8 organosulfur compounds were found as secondary metabolites of amino acids. Among the 22 crucial α-amino acids, garlic extracts revealed the presence of 18 amino acids, either in their native state or associated with various complex compounds. The study reported major organosulfur compounds, including Alliin, S-allyl cysteine, S-methyl cysteine, N-gamma-Glutamyl-S-allylcysteine, and 2-Propenyl 1-(2- propenylsulfinyl)propyl disulfide. This study demonstrated that HG17 garlic is abundant in amino acids and organosulfur compounds, suggesting its potential utilization as a supplement in nutraceuticals.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Aged garlic, Allium sativum, Amino acids, Dry garlic, Fresh garlic, Heated garlic, Organosulfur compounds

References
Afzaal, M., Saeed, F., Rasheed, R., Hussain, M., Aamir, M., Hussain, S., Mohamed, A.A., Alamri, M.S. & Anjum, F.M. (2021). Nutritional, biological, and therapeutic properties of black garlic: A critical review. International Journal of Food Properties, 24(1), 1387-1402. https://doi.org/10.1080/10942912.2021.1967386
Ahmed, T. & Wang, C.K. (2021). Black garlic and its bioactive compounds on human health diseases: A review. Molecules, 26(16), 5028. https://doi.org/10.3390/molecules26165028
Algso, M.A., Kivrak, A., Konus, M., Yilmaz, C. & Kurt-Kizildoğan, A. (2018). Synthesis and biological evaluation of novel benzothiophene derivatives. Journal of Chemical Sciences, 130, 1-11.
Al-Taai, I.H., Al-Fekaiki, D.F. & Jamail, R. (2019). Diagnosing the bioactive compounds in Iraqi garlic (Allium sativum) by GC-MS and HPLC. Journal of Physics: Conference Series, 1294, 062066.
Ansary, J., Forbes-Hernández, T.Y., Gil, E., Cianciosi, D., Zhang, J., Elexpuru-Zabaleta, M., Simal-Gandara, J., Giampieri, F. & Battino, M. (2020). Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants, 9(7), 619. https://doi.org/10.3390/antiox9070619
Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H. & Park, H.J. (2014). Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT – Food Science and Technology, 55(1), 397-402. https://doi.org/10.1016/j.lwt.2013.05.006
Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H. & Park, H.J. (2012). A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT – Food Science and Technology, 46(2), 532-535. https://doi.org/10.1016/j.lwt.2011.11.013
Bakht, J., Muhammad, T., Ali, H., Islam, A. & Shafi, M. (2011). Effect of different solvent extracted sample of Allium sativum (Linn) on bacteria and fungi. African Journal of Biotechnology, 10, 5910-5915.
Beatriz, A., Mondino, M.G. & de Lima, D.P. (2022). Lactams, penicillins, and cephalosporins: An overview on the synthesis and their antibacterial activity. N-Heterocycles: Synthesis and Biological Evaluation, 97-142.
Bhatwalkar, S.B., Mondal, R., Krishna, S.B.N., Adam, J.K., Govender, P. & Anupam, R. (2021). Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers in Microbiology, 12, 613077. https://doi.org/10.3389/fmicb.2021.613077
Choi, I.S., Cha, H.S. & Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19(10), 16811-16823. https://doi.org/10.3390/molecules191 016811
De Greef, D., Barton, E.M., Sandberg, E.N., Croley, C.R., Pumarol, J., Wong, T.L., Das, N. & Bishayee, A. (2021). Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. In Seminars in Cancer Biology. Academic Press, 73. https://doi.org/10.1016/j.semcancer.2020.11.020
El-Saber Batiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y.H.A., A Al-Sagan, A., Abd El-Hack, M.E., Taha, A.E., M Abd-Elhakim, Y. & Prasad Devkota, H. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872
Espinoza, T., Valencia, E., Albarrán, M., Díaz, D., Quevedo, R.A., Díaz, O. & Bastías, J. (2020). Garlic (Allium sativum L) and Its beneficial properties for health: A review. Agroindustrial Science, 10(1), 103-115. https://doi.org/10.17268/agroind.sci.2020.01.14
Farhat, Z., Hershberger, P.A., Freudenheim, J.L., Mammen, M.J., Hageman Blair, R., Aga, D.S. & Mu, L. (2021). Types of garlic and their anticancer and antioxidant activity: A review of the epidemiologic and experimental evidence. European Journal of Nutrition, 60(7), 3585-3609. https://doi.org/10.1007/s00394-021-02482-7
Gao, X., Xue, Z., Ma, Q., Guo, Q., Xing, L., Santhanam, R.K., Zhang, M. & Chen, H. (2020). Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism. Journal of Food Biochemistry, 44(2), e13126. https://doi.org/10.1111/jfbc.13126
Kang, O. J. (2016). Physicochemical characteristics of black garlic after different thermal processing steps. Preventive Nutrition and Food Science, 21(4), 348-354. https://doi.org/10.3746/pnf.2016.21.4.348
Kim, M.S., Kim, M.J., Bang, W.S., Kim, K.S. & Park, S.S. (2012). Determination of s-allyl-l-cystein, diallyl disulfide, and total amino acids of black garlic after spontaneous short-term fermentation. Journal of the Korean Society of Food Science and Nutrition, 41(5), 661-665. https://doi.org/10.3746/jkfn.2012.41.5.661
Kodera, Y., Ushijima, M., Amano, H., Suzuki, J.I. & Matsutomo, T. (2017). Chemical and biological properties of S-1-propenyl-l-cysteine in aged garlic extract. Molecules, 22(4), 570. https://doi.org/10.3390/molecules22040570
Kovarovič, J., Bystrická, J., Vollmannová, A., Tóth, T. & Brindza, J. (2019). Biologically valuable substances in garlic (Allium sativum L.)-A review. Journal of Central European Agriculture, 20(1), 292-304. https://doi.org/10.5513/JCEA01/20.1.2304
Lee, J. & Harnly, J.M. (2005). Free amino acid and cysteine sulfoxide composition of 11 garlic (Allium sativum L.) cultivars by gas chromatography with flame ionization and mass selective detection. Journal of Agricultural and Food Chemistry, 53(23), 9100-9104. https://doi.org/10.1021/jf051228e
Liang, T., Wei, F., Lu, Y., Kodani, Y., Nakada, M., Miyakawa, T. & Tanokura, M. (2015). Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. Journal of Agricultural and Food Chemistry, 63(2), 683-691. https://doi.org/10.1021/jf504836d
Liu, P., Weng, R., Sheng, X., Wang, X., Zhang, W., Qian, Y. & Qiu, J. (2020). Profiling of organosulfur compounds and amino acids in garlic from different regions of China. Food Chemistry, 305, 125499. https://doi.org/10.1016/j.foodchem.2019.125499
Molina-Calle, M., de Medina, V.S., Priego-Capote, F. & de Castro, M.D.L. (2017). Establishing compositional differences between fresh and black garlic by a metabolomics approach based on LC–QTOF MS/MS analysis. Journal of Food Composition and Analysis, 62, 155-163. https://doi.org/10.1016/j.jfca.2017.05.004
Nakamoto, M., Kunimura, K., Suzuki, J.I. & Kodera, Y. (2020). Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Experimental and Therapeutic Medicine, 19(2), 1550-1553. https://doi.org/10.3892/etm.2019.8388
Naznin, M.T., Akagawa, M., Okukawa, K., Maeda, T. & Morita, N. (2008). Characterization of E- and Z-ajoene obtained from different varieties of garlics. Food Chemistry, 106(3), 1113-1119. https://doi.org/10.1016/j.foodch em.2007.07.041
Noumi, E., Snoussi, M., Anouar, E.H., Alreshidi, M., Veettil, V.N., Elkahoui, S., Adnan, M., Patel, M., Kadri, A., Aouadi, K., De Feo, V. & Badraoui, R. (2020). HR-LCMS-based metabolite profiling, antioxidant, and anticancer properties of Teucrium polium L. methanolic extract: Computational and in vitro study. Antioxidants, 9(11), 1089. https://doi.org/10.3390/antiox9111089
Oktari, K., Azizah, Z., Chandra, B. & Asra, R. (2020). A review: Antioxidant and immunomodulator effects of black garlic. EAS Journal of Pharmacy and Pharmacology, 2(6), 193-198. https://doi.org/10.36349/easjpp.2020.v02i06.001
Onozato, M., Nakanoue, H., Sakamoto, T., Umino, M. & Fukushima, T. (2023). Determination of d- and l-amino Acids in Garlic Foodstuffs by Liquid chromatography–tandem mass spectrometry. Molecules, 28(4), 1773. https://doi.org/10.3390/molecules28041773
Ruiz-Sánchez, E., Pedraza-Chaverri, J., Medina-Campos, O.N., Maldonado, P.D. & Rojas, P. (2020). S-allyl cysteine, a garlic compound, produces an antidepressant-like effect and exhibits antioxidant properties in mice. Brain Sciences, 10(9), 592. https://doi.org/10.3390/brainsc i10090592
Saeed, M.W., Gillani, S.W., Mahmood, R.K. & Usman, M. (2021). Assessment of the antihyperlipidemic effect of garlic vs pitavastatin in patients with moderate hyperlipidemia: A metanalysis of randomized controlled trials. Chiang Mai University Journal of Natural Sciences, 20(4), e2021087. https://doi.org/10.12982/CMUJNS.2021.087
Saha, M. & Bandyopadhyay, P.K. (2017). Phytochemical screening for identification of bioactive compound and antiprotozoan activity of fresh garlic bulb over trichodinid ciliates affecting ornamental goldfish. Aquaculture, 473, 181-190. https://doi.org/10.1016/j.aquaculture.2017.0 2.009
Sato, E., Kohno, M. & Niwano, Y. (2006). Increased level of tetrahydro-β-carboline derivatives in short-term fermented garlic. Plant Foods for Human Nutrition, 61(4), 175-178. https://doi.org/10.1007/s11130-006-0028-2
Sembiring, N.B. & Iskandar, Y. (2019). A review of component and pharmacology activities of black garlic. Majalah Obat Tradisional, 24(3), 178-183. https://doi.org/10.22146/mot.45277
Sepahi, M., Jalal, R. & Mashreghi, M. (2017). Antibacterial activity of poly-l-arginine under different conditions. Iranian Journal of Microbiology, 9(2), 103-111.
Serrano, J.C.E., Castro-Boqué, E., García-Carrasco, A., Morán-Valero, M.I., González-Hedström, D., Bermúdez-López, M., Valdivielso, J.M., Espinel, A.E. & Portero-Otín, M. (2023). Antihypertensive effects of an optimized aged garlic extract in subjects with Grade I hypertension and antihypertensive drug therapy: A randomized, triple-blind controlled trial. Nutrients, 15(17), 3691. https://doi.org/10.3390/nu15173691
Shang, A., Cao, S.Y., Xu, X.Y., Gan, R.Y., Tang, G.Y., Corke, H., Mavumengwana, V. & Li, H.B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7), 246. https://doi: 10.3390/foods8070246
Thomas, S., Senthilkumar, G.P., Sivaraman, K., Bobby, Z., Paneerselvam, S. & Harichandrakumar, K.T. (2015). Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male Wistar rats fed with high fructose diet. Iranian Journal of Medical Sciences, 40(1), 45-50.
Torres-Palazzolo, C., de Paola, M., Quesada, I., Camargo, A. & Castro, C. (2020). 2-vinyl-4h-1, 3-dithiin, a bioavailable compound from garlic, inhibits vascular smooth muscle cells proliferation and migration by reducing oxidative stress. Plant Foods for Human Nutrition, 75(3), 355-361. https://doi.org/10.1007/s11130-020-00819-x
Wang, Y.L., Guo, X.Y., He, W., Chen, R.J. & Zhuang, R. (2017). Effects of alliin on LPS-induced acute lung injury by activating PPARγ. Microbial Pathogenesis, 110, 375-379. https://doi.org/10.1016/j.micpath.2017.07.019
Xiao, F. & Guo, F. (2022). Impacts of essential amino acids on energy balance. Molecular Metabolism, 57, 101393. https://doi.org/10.1016/j.molmet.2021.101393
Yudhistira, B., Punthi, F., Lin, J.A., Sulaimana, A.S., Chang, C.K. & Hsieh, C.W. (2022). S‐allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value‐added product development. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2665-2687. https://doi.org/10.1111/1 541-4337.12937
Yun, H.M., Jin, P., Park, K.R., Hwang, J., Jeong, H.S., Kim, E.C., Jung, J.K., Oh, K.W., Hwang, B.Y., Han, S.B. & Hong, J.T. (2016). Thiacremonone potentiates antioxidant effects to improve memory dysfunction in an APP/PS1 transgenic mice model. Molecular Neurobiology, 53(4), 2409-2420. https://doi.org/10.1007/s12035-015-9208-0
Zhang, X., Li, N., Lu, X., Liu, P. & Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96(7), 2366-2372. https://doi.org/10.1002/jsfa.7351
Section
Research Articles

How to Cite

Profiling of organosulfur compounds and amino acids in novel variety of Allium sativum (Hisar garlic 17) by HR-LCMS-QTOF. (2024). Journal of Applied and Natural Science, 16(1), 315-324. https://doi.org/10.31018/jans.v16i1.5386