Article Main

Mamta Bhatia Alka Sharma

Abstract

Natural components isolated from spices are gaining the attention of food researchers to prevent the growth of microbes associated with food spoilage and foodborne pathogenesis to meet the ever-increasing consumers’ demand for safe and wholesome food free from harmful synthetic preservatives. In the present study, five bioactive components of spice origin, namely, allylisothiocyanate (AITC), cinnamic aldehyde (CIA), cuminic aldehyde (CUA), eugenol (EU), and menthol (MT) were evaluated for their antimicrobial potential towards six bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Shigella sonnei, Staphylococcus aureus) and eleven fungal strains (Alternaria solani, Aspergillus niger, Botrytis cinerea, Cladosporium herbarum, Fusarium oxysporum, Geotrichum candidum, Penicillium citrinum, Penicillium expansum, Phoma exigua, Rhizopus arrhizus and Rhizopus stolonifer), by opting agar well diffusion assay, impregnated paper disc method and broth dilution technique. All these seventeen microbes pose deleterious effects on food and human health. Among the bioactive compounds, CIA and CUA turned out to be the most potent inhibitors of microorganisms, whereas MT was found to be the least effective. Lower concentrations of bioactive components, ranging from 1.95 µL/mL to 15.62 µL/mL, were needed to inhibit fungi, while higher concentrations ranging from 15.62 µL/mL to 1000 µL/mL were needed to inhibit bacterial strains. Among the bacterial strains tested, gram-negative bacteria were inhibited at higher component concentration levels (31.25 µL/mL-1000 µL/mL) compared to gram-positive bacteria. The present study updates the existing information on the antimicrobial potency of natural substances, paving the way to further research on establishing spice bioactive components as ‘natural additives’.


 

Article Details

Article Details

Keywords

Antimicrobial, Bioactive components, Essential oils, Pathogens, Spices

References
Aljaafari, M.N., Alkhoori, M.A., Hag-Ali, M., Cheng, W.H., Lim, S.H.E., Loh, J.Y. & Lai, K.S. (2022). Contribution of aldehydes and their derivatives to antimicrobial and immunomodulatory activities. Molecules. 27(11), 01-12. DOI: 10.3390/molecules27113589.
Angane, M., Swift, S., Huang, K., Butts, C.A. & Quek, S.Y. (2022). Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods. 11 (3), 01-26. DOI: 10.3390/foods11030464.
Aquil, F., Jeyabalan, J., Munagala, R., Ahmad, I., Schultz, D.J. & Gupta R.C. (2021). Cumin prevents 17β-estradiol-associated breast cancer in ACI rats. International Journal of Molecular Sciences. 22(12), 01-17. DOI: 10.3390/ijms22126194.
Bekuma, A. & Ahmed, W.M. (2018). Biopreservation, promising strategies to improve the safety and shelf-life of foods: A review. International Journal of Microbiological Research. 9(3), 76-80. DOI: 10.5829/idosi.ijmr.2018.76.80
Chouhan, S., Sharma, K. & Guleria S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 4(3), 01-21. DOI: 10.3390/medicines4030058.
De-Montizo-Prieto, S., Razola-Diaz, M.C., Gomez-Caravaca, A.M., Guerra-Haenandez, E.J., Jimenez-Valera, M., Garcia-Villanova, B., Ruiz-Bravo, A. & Verado V. (2021). Essential oils from fruits and vegetables, aromatic herbs and spices : composition, antioxidant and antimicrobial activities. Biology. 10(11), 01-21. DOI: 10.3390/biology10111091.
Devi, K.P., Sakthivel, R., Nisha, S.A., Suganthy, N. & Pandian SK. (2013). Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen. Proteus mirabilis. Archives of Pharmacal Research. 36(3), 282‑292. DOI: 10.1007/s12272-013-0028-3.
Doyale, A.A. & Stephens, J.C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterpia. 139, 01-18. DOI: 10.1016/j.fitote.2019.104405.
Embuscado, M.E. (2015). Spices and herbs: Natural sources of antioxidants-A mini review. Journal of Functional Foods. 18, 811-819. DOI: 10.1016/j.jff.2015.03.005.
El Fayoumy, R.A. (2021). Natural food preservation system as allyl isothiocyanate and edible brown seaweed Laminaria japonica against selected anaerobic foodborne bacteria: Clostridium perfringens and Campylobacter jejuni. Journal of Microbiology, Biotechnology and Food Science. 10(5), 01-04. DOI: 10.15414/jmbfs.1923.
Garcia-Rubio, R., de Oliveira, H.C., Rivera, J. & Trevijano-Contador, N. (2020). The fungal cell wall: Candida, Cryptococcus, and Aspergillus Species. Frontiers in Microbiology. 10, 01-13. DOI: 10.3389/fmicb.2019.02993.
Gutierrez-del-Rio, I., Fernandez, J. & Lombo F. (2018). Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents. 52(3), 309-315. DOI: 10.1016/j.ijantimicag.2018.04.024.
Hetta, H.F., Meshaal, A.K., Algammal, A.M., Yahia, R., Makharita, R.R., Marraiki, N., Shah, M.A., Hassan, H.A.M. & Batiha GE. (2020). In-vitro antimicrobial activity of essential oils and spices, powder of some medicinal plants against Bacillus species isolated from raw and processed Meat. Infection and Drug Resistance. 13, 4367-4378. DOI: 10.2147/IDR.S277295.
Iroegbu, C.U. & Nkere, C.K. (2005). Evaluation of the antibacterial properties of Picralima nitida stem bark extracts. International Journal of Molecular Medicine and Advance Sciences. 1, 182-189.
Jayapal, V. (2021). Antimicrobial activity of eugenol against human pathogenic bacteria by minimal inhibitory concentration, minimal bactericidal concentration and disc-diffusion methods. International Journal of Pharmaceutical Sciences and Research. 12(1), 330-335. DOI: 10.13040/IJPSR.0975-8232.12(1).330-35.
Kim, H.O., Park, S.W. & Park HD. (2004). Inactivation of Escherichia coli 0157:H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Journal of Food Microbiology. 21, 105-110. DOI:10.1016/S0740-0020(03)00010-8.
La Storia, A., Ercolini, D., Marinello, F., di Pasqua, R., Villani, F. & Mauriello G. (2011). Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Research in Microbiology. 162(2), 164–172. DOI: 10.1016/j.resmic.2010.11.006.
Lee, N.K. & Paik, H.D. (2016). Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean Journal for Food Sciences of Animal Resources. 36(4), 547-557. DOI: 10.5851/kosfa.2016.36.4.547.
Lima, L.S., Colombo, A.L. & de Almeida, J.N. (2019). Fungal cell wall: Emerging antifungals and drug resistance. Frontiers in Microbiology. 10, 01-09. DOI: 10.3389/fmicb.2019.02573.
Martínez-Pabón, M.C. & Ortega-Cuadros, M. (2020). Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review. Revista Colombiana de Ciencias Quimico-Farmaceuticas. 49(1), 44-69. DOI: 10.15446/rcciquifa.v49n1.87006.
Mehta, D., Saini, V. & Bajaj A. (2023). Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Medicinal Chemistry. 14, 1603-1628. DOI: 10.1039/D3MD00151B.
Monteiro-Neto, V., de Souza, C.D., Gonzaga, L.F., da Silveira, B.C., Sousa, N.C.F. & Pontes, J.P. (2020). Cuminaldehyde potentiates the antimicrobial actions of iprofloxacin against Staphylococcus aureus and Escherichia coli. Plos One. 15(5), 01-14. DOI: 10.1371/journal.pone.0232987.
Myszka, K., Leja, K. & Majcher, M.A. (2019). A current opinion on the antimicrobial importance of popular pepper essential and its application in food industry. Journal of Essential oil Research. 31(1), 01-18. DOI: 10.1080/10412905.2018.1511482.
Papadochristopoulos, A., Kerry, J.P., Fegan, N., Burgess, C.M. & Duffy, G. (2021). Natural anti-microbials for enhanced microbial safety and shelf-life of processed packaged meat. Foods. 10(7), 01-42. DOI: 10.3390/foods10071598.
Pľuchtováa, M., Gervasib, T., Benameurc, Q., Pellizzerib, V., Gruľováa, D., Camponed, L., Sedláke, V. & Cicerob N. (2018). Antimicrobial Activity of two Mentha species essential oil and its dependence on different origin and chemical diversity. Natural Products Communications. 13(8), 1051-1054. DOI: 10.1177/1934578X1801300832.
Quinto, E.J., Caro, I., Villalobos-Delgado, L.H., Mateo, J., De-Mateo-Silleras, B. & Redondo-Del-Río, M.P. (2019). Food Safety through Natural Antimicrobials. Antibiotics. 8(4), 01-30. DOI: 10.3390/antibiotics8040208.
Rattanachaikunsopon, P. & Phumkhachorn, P. (2010). Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. Journal of Bioscience and Bioengineering. 110(5), 614–619. DOI: 10.1016/j.jbiosc.2010.06.010.
Romeo, L., Iori, R., Rollin, P., Bramanti, P. & Mazzon E. (2018). Isothiocyanates : An overview of their antimicrobial activity against human infections. Molecules. 23(3), 01-18. DOI: 10.3390/molecules23030624.
Sant, D.G., Tupe, S.G., Ramana, C.V. & Deshpande, M.V. (2016). Fungal cell membrane-promising drug target for antifungal therapy. Journal of Applied Microbiology. 121(6), 1498-1510. DOI: 10.1111/jam.13301.
Sharifi-Rad, J., El Rayess, Y., Abi Rizk, A., Sadaka, C., Zgheib, R. & Zam, W. (2020). Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Frontiers in Pharmacology. 11, 01-23. DOI: 10.3389/fphar.2020.01021.
Vasconcelos, N.G., Croda, J. & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis. 120, 198-203. DOI:10.1016/micpath2018.04.036.
Walsh, D.J., Livinghouse, T., Goeres, D.M., Mettler, M. & Stewart, P.S. (2019). Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria. Frontiers in chemistry. 7, 01-13. DOI: 10.3389/fchem.2019.00653.
Section
Research Articles

How to Cite

Evaluation of few bioactive components of spice origin for their antimicrobial potential towards microbes commonly implicated in food spoilage and foodborne pathogenesis. (2024). Journal of Applied and Natural Science, 16(1), 308-314. https://doi.org/10.31018/jans.v16i1.5375