Sapna Dhawan Munjal Jyotika Dhankhar Alka Sharma Sanju Bala Dhull


Legumes are a cost-effective source of proteins and abundant starch, a biodegradable substance, providing human nutrition and serving various food sectors globally. Some of the neglected (underutilised) legumes can also be used as the cheapest source of starch. Therefore, the present study was conducted to determine the physicochemical characteristics of jack bean (Canavalia ensiformis) starch - a legume not widely known so underutilised. The starch was isolated from the bean by standard method to study its various properties. One-way analysis of variance was employed to verify a significant difference at the 5% significance level. The jack bean yielded 30.98% of starch. The starch’s moisture, ash, fat, protein, fiber, and carbohydrate content were 9.67%, 0.19%, 0.27%, 0.56%, 0.27%, and 89.28% respectively. The physicochemical properties were also determined. The apparent and total amylose contents were 43.82% and 47.78%, respectively, with 7.66% of amylose leaching at 95°C. The water and oil absorption capacities were 2.31 and 2.56 g/g, respectively, while emulsion capacity and stability were 62.30 and 71.38 %, respectively. The solubility and swelling power of jack bean starch increased with temperature from 55 to 95°C. The effect of starch concentrations (6, 8, and 10%) on freeze-thaw stability revealed that water expelled decreased as starch content increased. Nevertheless, a comprehensive investigation has not been conducted into the distinct functional characteristics and other attributes of jack bean starch. This study could provide new opportunities for conventional starch industries that rely on starch from sources like cereals, tubers, and rhizomes.





Amylose, Freeze thaw, Jack bean legume, Starch, Swelling, Turbidity, Underutilized

Adebowale, K. O. & Lawal, O. S. (2003). Microstructure, physicochemical properties and retrogradation behaviour of mucuna bean (Mucuna pruriens) starch on heat moisture treatments. Food Hydrocoll., 17(3), 265-272. https://doi.org/10.1002/jsfa.1569.
Akinyemi, F. A., Orishadipe, A. T., Ebun-Oluwa, O. & Aladesanmi, O. A. (2020). Physico-chemical properties and functional characteristics of jack beans (Canavalia ensiformis) starch. World J. Biol. Pharm. Health Sci., 3(2),12-22. https://doi.org/10.30574/wjbphs.2020.3.2.0018
Ambigaipalan, P., Hoover, R., Donner, E. & Liu, Q. (2013). Retrogradation characteristics of pulse starches. Food Res. Int., 54 (1), 203-212. https://doi.org/10.1016/j.foodres.2013.06.012
AOAC( 2006). Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC.
Ariyantoro, A. R., Affandi, D. R., Yulviatun, A., Ishartani, D. & Septiarani, A. (2021). Pasting properties of jack bean (Canavalia ensiformis) modified starch with heat moisture treatment. IOP Conference Series Earth and Environmental Science 905(1):012092. http://dx.doi.org/10.1088/1755-1315/905/1/012092.
Ashogbon, A. O. & Akintayo, E. T. (2013). Morphological and functional properties of starches from cereal and legumes: a comparitive study. J. Int. J. Biotechnol. Food Sci., 1(4), 72-83.No paper link available.
Bamiro, F. O., Tairu, A. O. & Oderinde, R. A. (1994). The nutritive value of Nigerian Jack beans (Canavalia ensiformis). La Rivista Heliana Delle Sastance Citrasse, 23(2), 85-112.
Betancur-Ancona, D., Garcia-Cervera, E., Canizares-Hernandez, E. & Chel-Guerrero, L. (2002). Chemical modification of Jack bean (Canavalia ensiformis) starch by succinylation. Starch/Starke, 54, 540-545. https://doi.org/10.1002/1521-379X(200211)54:11<540::AID-STAR540>3.0.CO;2-%23
Beuchat, L. R. (1977). Functional and electrophoretic characterstics of succinylated peanut flour proteins. J. Agric. Food Chem., 25,258. https://doi.org/10.1021/jf60210a044
Blazek, J. and Copeland, L. (2008). Pasting and swelling properties of wheat Flour and starch in relation to amylose content. Carbohydrate Polym., 71, 380-387.
Brennan, A. B., Lan, T. & Brennan, C. S. (2016). Synergistic effects of barley, oat and legume material on physicochemical and glycemic properties of extruded cereal breakfast products. J. Food Process. Preserv., 40(3), 405-413. : https://doi.org/10.1111/jfpp.12617
Bressani, R., Brenes, R. S., Garcia, A. & Elias, L. G. (1987). Chemical composition, amino acid content and protein quality of canavalia spp. Seeds. J. Sci. Food Agric., 40,17-23. https://doi.org/10.1002/jsfa.2740400104
Chinma, C. E., Ariahu, C. C. & Abu, J. O. (2013). Chemichal composition, functional and pasting properties of cassava starch and soy protein concentrate blends. J. Food Sci. Technol., 50 (6), 1179-1185. doi: 10.1007/s13197-011-0451-8.
Chou, D. H. & Morr, C. V. (1979). Protein waret interactions and functional properties. J. Am. Oil Chem. Soc., 56, 53-62. https://doi.org/10.1007/BF02671785
Chung, H. J., Hoover, R. & Liu, Q. (2009). The impact of single and dual hydrothermal modification on the molecular structure and physicochemichal properties of normal corn starch. Int. J. Biol. Macromol., 44, 203-210. 10.1016/j.ijbiomac.2008.12.007.
Das, D., Jha, S. & Kumar, K. J. (2015). Isolation and release characteristics of starch from the rhizome of Indian Palo. Int. J. Biological Macromol. 72, 341-346. https://doi.org/10.1016/j.ijbiomac.2014.08.009
Denchai, N., Suwannaporn, P., Lin, J., Soontaranon, S., Kiatponglarp, W. & Huand, T. C. (2019). Retrogradation and digestibility of rice starch gels: the joint effect of degree of gelatinisation ans storage. J. Food Sci., 84(6), 1400-1410. 10.1111/1750-3841.14633
Deshpande, S. S., Sathe, S. K., Rangnekar, P. D. & Salunkhe, D. K. (1982). Functional properties of modified black gram (Phaseolus mungo L.) starch. J. Food Sci., 47, 1528-1533. :10.1111/j.1365-2621.1982.tb04975.x
Dossou, V. M., Agbenorhevi, J. K., Alemawor, F. & Oduro, I. (2014). Physicochemichal and functional properties of full fat and defatted Ackee (Blighia sapida) Aril flours. Am. J. Food Sci. Technol., 2(6), 187-191. 10.12691/ajfst-2-6-3
Du, S. K., Jiang, H., Yu, X. & Jane, J. L. (2014). Physicochemichal and functional properties of whole legume flour. J. Food Sci. Technol., 55, 308-313. https://doi.org/10.1016/j.lwt.2013.06.001
Escobedo, A. & Mojica, I. (2021). Pulse based snacks as functional foods: processing challenges and biological potential. Compr. Rev. Food Sci. Food Saf., 20, 4678-4702. https://doi.org/10.1111/1541-4337.12809
Galvez, F. C. F., Resurreccion, A. V. A. (1993). The effect of decortication and method of extraction on the physical and chemichal properties of starch from mung bean (Vigna radiate (L) wilczec). J. Food Process Preserv., 17, 93-107. http://dx.doi.org/10.1111/j.1745-4549.1993.tb00227.x
Goswami, K., Yadav, R. B., Yadav, B. S. & Yadav, R. L. (2018). Physico-chemical , textural and crystallinity properties of oxidised, cross-linked and dual-modified white sorghum starch. Int. Food Res. J., 25, 2104-2111. http://www.ifrj.upm.edu.my
Halbrook, W. V. & Kurtzman, R. H. (1975). Water uptake of bean and other starches at high temperatures and pressures. Cereal Chem., 52, 156-159.
Hasmadi, M., Noorfarahzilah, M., Noraidah, H., Zainol, M. K. & Jahurul, M. H. A. (2020). Functional properties of composite flour: a review. Food Res., 4(6), 1820-1831. https://doi.org/10.26656/fr.2017.4(6).419
Hoover, R. & Ratnayake, W. S. (2002). Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem., 78(4), 489-98. http://dx.doi.org/10.1016/S0308-8146(02)00163-2
Hoover, R., Hughes, T., Chung, H. J. & Liu Q. (2010). Composition, molecular structure, properties and modification of pulse starches: A review. Food Res. Int., 43, 399-413. https://doi.org/10.1016/j.foodres.2009.09.001
Hoover, R. & Ratnayake, W. S. (2001). Determination of total amylose content of starch. Current Protocols In Food Analytical Chemistry. , 2.3.1-2.3.5. http://dx.doi.org/10.1002/0471142913.fae0203s00.
Hoover, R. & Sosulski, F. W. (1991). Composition, structure functionality and chemichal modification of legume starches-a review. Canadian J. Physiol. Pharmacol., 69, 79-92. https://doi.org/10.1139/y91-012
Hoover, R. & Sosulski, F. W. (1985). Studies on functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch/Staerke., 37(6), 181-191. https://doi.org/10.1002/star.19850370602
Hoover, R. (2001). Composition, molecular structure and physico-chemichal properties of tuber and root starches: a review. Carbohydr. Polym., 45(3), 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5
Hussain, S., Alamri, M. S. & Mohamed, A. A. (2013). Rheological, thermal and textural properties of starch blends prepared from wheat and turkish bean starches. Food Sci. Technol. Res., 19 (6), 1141-1147. https://doi.org/10.3136/fstr.19.1141
Karim, A. A., Norziah, M. H. & Seow, C. C. (2000). Methods for the study of starch retrogradation. Food Chem., 71, 9-36. https://doi.org/10.1016/S0308-8146(00)00130-8
Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M. & Uebersax, M. A. (2022). Physico-chemical and functional properties of legume protein, starch and dietary fiber- a review. Legum. sci., 4 (1), e117. http://dx.doi.org/10.1002/leg3.117
Kinsella, J. E. (1979). Functional properties of soy proteins. J. Am. Chem. Soc., 56(3), 242-258. https://doi.org/10.1007/BF02671468
Lawal, A. O. & Adebowale, K. O. (2006). The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics. Food Sci. Technol., 39(8), 918-929. http://dx.doi.org/10.1016/j.lwt.2005.06.016
Lawal, O. S. & Adebowale, K. O. (2005). Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohydr. Polym., 60(3), 331-341. https://doi.org/10.1016/j.carbpol.2005.01.011
Lawal, O. S. & Adebowale, K. O. (2005). An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modification. Eur. Food Res. Technol., 221, 631-638. http://dx.doi.org/10.1007/s00217-005-0032-z.
Leach, H. W., McCowen, L. D. & Schoch, T. J. Structure of the starch granule. I- Swelling and solubility patterns of various starches. Cereal Chem. 1959; 36: 534-544.
Lii, C.Y. & Chang, S. M. (1981). Characterisation of red bean (Phaseolus radiatus var. Aurea) starch and its noodle quality. J. Food Sci., 46, 78-81. https://doi.org/10.1111/j.1365-2621.1981.tb14535.x
Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., Zhao, K. & Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. J. Food Sci. Technol., 55 (12), 5142-45. https://doi.org/10.1007/s13197-018-3460-z.
Marimuthu, M. & Gurumoorthi, P. (2013). Physicochemical and functional properties of starches from Indian Jack bean, an underutilised wild food legume. J. Chem. Pharm. Res. 5 (1), 221-225.
Mengting, M., Wang, Y., Wang, M., Jane, J. I. & Du, S. K. (2016). Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocol. 63: 249-255. http://dx.doi.org/10.1016/j.foodhyd.2016.09.004.
Mitre, V. (1991). Wild plant in Indian folk life: a historical perspective. In S.K. Jain (Ed). Contribution to ethnobotany of India (pp 37-58). Scientific Publishers.
Morrison, W. R. (1988). Lipids in cereal starches: a review. J. Cereal Sci., 8, 1-15. https://doi.org/10.1016/S0733-5210(88)80044-4
Olu-Owolabi, B. I., Afolabi, T. A. & Adebowale, K. O. (2011). Pasting, thermal, hydration and functional properties of annealed and heat-moisture treated starch of sword bean (Canavalia gladiata)., 14,157-174. http://dx.doi.org/10.1080/10942910903160331
Orford, P. D., Ring, S. G., Carroll, V., Miles, M. J. & Morris, V. J. (1987). The effect of concentratin and botanical source on the gelation and retrogradation of starch. J. Sci. Food Agric., 39, 169. https://doi.org/10.1002/jsfa.2740390210
Patel, R., Singh, R,. K. R., Tyagi, V., Mallesha, Raju, P. S. (2016). Nutritional evaluation of Canavalia ensiformis (Jack bean) cultivated in Northeast region of India. Int. J. Botany Stud., 1(6), 18-21.
Peera, C. & Hoover, R. (1999). Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chem., 64, 361-375. https://doi.org/10.1016/s0308-8146(98)00130-7
Peroni, F. H. G., Rocha, T. S. & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Sci. Tech. Int., 12 (6), 505-513. https://doi.org/10.1177/1082013206073045.
Rajerison R., 2006. Vigna umbelatta (Thunb.) Ohwi & H. Ohashi. In: Brink M, Belay G (Eds.). PROTA 1: Cerals and pulses, Wageningen, Pays Bas.
Raphaelides, S. & Karkalas J. (1988). Thermal dissociation of amylose-fatty acid complexes. Carbohydr. Res., 172, 65. https://doi.org/10.1016/S0008-6215(00)90843-7
Ratnayake, W. S., Hoover, R., Shahidi, F. & Prera, C. (2001). Composition, molecular structure and physicochemical properties of starches from four field pea (Pisum Sativum L.) cultivars. Food Chem., 72(2), 189-202. http://dx.doi.org/10.1016/S0308-8146(01)00124-8
Reddy, C. K., Luan, F. & Xu, B. (2017). Morphology, crystallinity, pasting, thermal and quality characteristics of starches from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth). Int. J. Biol. Macromol., 105, 354-362. https://doi.org/10.1016/j.ijbiomac.2017.07.052
Romero, H. M. & Zhang, Y. (2019). Physicochemical properties and rheological behaviour of flours and starches from four bean varities for gluten free pasta formulation. J. Agric. Food Res.,1, 100001. Romero, H. M. & Zhang, Y. (2019). Physicochemical properties and rheological behaviour of flours and starches from four bean varities for gluten free pasta formulation. J. Agric. Food Res.,1, 100001.
Sathe, S. K., Iyer, V. & Salunkhe, D. K. (1981). Investigation of great Northen bean (Phaseolus vulgaris L.). Starch solubility, swelling interaction with free fatty acids and alkaline water retention capacity of blends with wheat flours. J. Food Sci., 46, 1914-1917. https://doi.org/10.1111/j.1365-2621.1981.tb04518.x
Sathe, S. K. & Salunkhe, D. K. (1981). Preparation and utilisation of protein concentrates and isolates for nutritional and functional improvements of foods. J. Food Qual., 4, 145-233. https://doi.org/10.1111/j.1745-4557.1981.tb00731.x
Schirmer, M., Hochstotter, A., Jekle, M., Arendt, E. & Becker, T. (2013). Physicochemichal and morphologichal characterisation of different starches with variable amylose/amylopectin ratio. Food Hydrocoll., 32(1), 52-63. http://dx.doi.org/10.1016/j.foodhyd.2012.11.032
Segura, M., Chel, L. & Betancur, D. (2010). Effect of Octenylsccinylation on functional properties of Lima Bean (Phaseolus lunatus) starch. J. Food Process Eng., 33, 712-727. http://dx.doi.org/10.1111/j.1745-4530.2008.00299.x
Shevkani, K., Singh, N., Patil, C., Awasthi, A. & Paul, M. (2022). Antioxidative and antimicrobial properties of pulse proteins and their applications in gluten free foods and sports nutrition. Int. J. Food Sci. Technol. 57, 5571-5584. https://doi.org/10.1111/ijfs.15666
Singh, N. (2017). Pulses: an overview. J. Food Sci. Technol., 54, 853-857. https://doi.org/10.1007/s13197-017-2537-4
Singh, N., Kaur, N., Rana, J. C. & Sharma, S. K. (2010). Diversity in seed and flour properties in field pea (Pisum sativum) germplasm. Food Chem., 122, 518-525. https://doi.org/10.1016/j.foodchem.2010.02.064
Sozer, N., Holopainen-Mantila, U. & Poutanen, K. (2017). Traditional and new food uses of pulses. Cereal Chem., 94, 66-73. https://doi.org/10.1094/CCHEM-04-16-0082-FI.
Sreerama, Y. N., Sashikala, W. B., Pratape, V. & Singh, V. (2012). Nutrients and anti-nutrients in cow-pea and horse gram flours in comparison to chickpea flour: evaluation of their flour funtionality. Food Chem, 131, 462-468. http://dx.doi.org/10.1016/j.foodchem.2011.09.008.
Sukhija, S., Singh, S. & Riar, C. S. (2015). Isolation of starches from different tubers and study of their physicochemical, thermal, rheological and morphological characteristics. Starch Starke. 68: 160-168. https://doi.org/10.1002/star.201500186
Ubwa, S. T., Abah, J., Asemave, K. & Shambe, T. (2012). Studies on gelatinisation temperature of some cereal starches. Int. J. Chem., 4 (6), 22-28. http://dx.doi.org/10.5539/ijc.v4n6p22
Van Hung, P., Maeda, T. & Morita, N. (2007). Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch/Starke., 59, 125-131. http://dx.doi.org/10.1002/star.200600577
Varavinit, S., Shobsngob, S., Varanyanond, W., Chinachoti, P. & Naivikul, O. (2002). Freezing and thawing conditions affects the gel stability of different varieties of rice flour. Starch-Starke., 54 (1), 31-36. http://dx.doi.org/10.1002/1521-379X(200201)54:1%3C31::AID-STAR31%3E3.0.CO;2-E
Yuliana, M., Huynh, L. H., Ho, Q. P., Truong, C. T. & Ju, Y. H. (2012). Defatted cashew nut shell starch as renewable polymeric material: isolation and characterisation. Carbohydrate Polym. 87: 2576-258. https://doi.org/10.1016/j.carbpol.2011.11.044
Yusuf, A. A., Ayedun, H. & Logunleko, G. B. (2007). Functional properties of unmodified and modified Jack bean (Canavalia ensiformis) starches. Niger. Food J., 25 (2), 141-149. http://dx.doi.org/10.4314/nifoj.v25i2.50852.
Research Articles

How to Cite

Physicochemical properties of native Jack bean (Canavalia ensiformis) starch: An underutilised legume. (2024). Journal of Applied and Natural Science, 16(1), 410-419. https://doi.org/10.31018/jans.v16i1.5370