Antibiotic resistance genes in Bacteroides isolated from faeces of Philippine ducks, Anas luzonica and Anas platyrhynchos domesticus
Article Main
Abstract
The problem of antimicrobial resistance (AMR) has severely afflicted the livestock industry because antibiotics are indiscriminately used for treating infectious diseases and for nontherapeutic purposes. Unfortunately, compared with human AMR research, livestock AMR research is lagging. Thus, this study aimed to contribute to the dearth of knowledge regarding livestock AMR by detecting 10 antibiotic resistance genes (ARGs) in Bacteroides isolated from duck faeces. The 10 ARGs were tetQ, linA, bexA, msrSA, mefA, nim, cfiA, cepA, cfxA, and ermF. In total, 32 isolates were grown, and their DNAs were extracted and subjected to polymerase chain reaction. All isolates were ARG-positive for 1–3 different genes. The ARG-positive genes were linA (21/32), mefA (20/32), and bexA (1/32). Of the 32 isolates, 25 (78%) contained 2–3 ARGs. Although all isolates were ARG-positive, AMR may not be that prevalent in the duck livestock industry because only a maximum of 3/10 ARGs were detected. This is possibly because the duck livestock industry is still a small-scale backyard industry; hence, the use of antibiotics in this industry is not that rampant. However, some reports have shown that Bacteroides exhibit extensive horizontal transfer of resistance and virulence genes. The prevalence of these genes may increase if the misuse of antibiotics in the duck industry is not addressed early.
Article Details
Article Details
Antimicrobial resistance, Antibiotic resistance gene, Bacteroides, Ducks, Philippines
Berglund, B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology and Epidemiology, 5(1), 28564. doi.org/10.3402/iee.v5.28564
Berić., T, Biočanin, M., Stanković, S., Dimkić, I., Janakiev, T., Fira, Đ. & Lozo, J. (2018). Identification and antibiotic resistance of Bacillus spp. isolates from natural samples. Archives of Biological Sciences, 70(3), 581–588. doi.org/10.2298/ABS180302019B
Boto, L., Pineda, M. & Pineda, R. (2019). Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. The FEBS Journal, 286(20), 3959–3967. doi.org/10.1111/febs.15054
Cabral, J.P.S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703. doi.org/10.3390/ijerph7103657
Cai, Y., Kong, F. & Gilbert, G.L. (2007). Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. Journal of Clinical Microbiology, 45(8), 2754–2755. doi.org/10.1128/JCM.00579-07
Chang, H.S. & Dagaas, C.T. (2004). The Philippine duck industry: Issues and research needs. University of New England Graduate School of Agricultural and Resource Economics School of Economics.
Chang, H.S., Dagaas, C.T., de Castro, N., Ranola, R., Lambio, A. & Malabayuabas, M.L. (2003). An overview of the Philippine duck industry. 47th Annual Conference of the Australian Agricultural and Resource Economics Society: 12–14 February 2003; Fremantle, Australia., 27
Clancy, J., Petitpas, J., Dib-Hajj, F., Yuan, W., Cronan, M., Kamath, A.V., Bergeron, J. & Retsema, J.A. (1996). Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Molecular Microbiology, 22(5), 867–879. doi.org/10.1046/j.1365–2958.1996.01521.x
Dela Rosa, C.J.O. & Rivera, W.L. (2021). Identification of Bacteroides spp. from ducks using 16s rRNA gene PCR assay: Prelude to its application in microbial source tracking. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), 1–7. doi.org/10.15414/jmbfs.4101
Delabouglise, A., Nguyen-Van-Yen, B., Thi Le Thanh, N., Thi Ai Xuyen, H., Tuyet, P.N., Lam, H.M. & Boni, M.F. (2018). Demographic features and mortality risks in smallholder poultry farms of the Mekong River delta region. bioRxiv, 1–13. doi.org/10.1101/341800
Eid, H.M., Algammal, A.M., Elfeil, W.K., Youssef, F.M., Harb, S.M. & Abd-Allah, E.M. (2019). Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Veterinary World, 12(5), 677–683. doi.org/10.14202/vetworld.2019.677-683
Eitel, Z., Sóki, J., Urbán, E., Nagy, E. & ESCMID Study Group on Anaerobic Infection. (2013). The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe, 21, 43–49. doi.org10.1016/j.anaerobe.2013.03.001
Ekpeghere, K.I., Lee, J-W., Kim, H-Y., Shin, S-K. & Oh, J-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. doi.org/10.1016/j.chemosphere.2016.10.077
Food and Agriculture Organization of the United Nations (2021). http://www.fao.org/faostat/en/#data/QL
Gao, F-Z., Zou, H-Y., Wu, D-L., Chen, S., He, L-Y., Zhang, M., Bai, H. & Ying, G-G. (2020). Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. Environment International, 136, 105484. doi.org/10.1016/j.envint.2020.105484
Garcia, B.C.B., Dimasupil, M.A.A.Z., Vital, P.G., Widmer, K.W. & Rivera, W.L. (2015). Fecal contamination in irrigation water and microbial quality of vegetable primary production in urban farms of Metro Manila, Philippines. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 50(10), 734–743. doi.org/10.1080/03601234.2015.1048107
He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R. & Alvarez, P.J.J. (2020). Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water, 3(1), 1–11. doi.org/10.1038/s41545-020-0051-0
Hong, P-Y., Wu, J-H. & Liu, W-T. (2008). Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Applied and Environmental Microbiology, 74(9), 2882–2893. doi.org/10.1128/AEM.02568-07
Husain, F., Tang, K., Veeranagouda, Y., Boente, R., Patrick, S., Blakely, G. & Wexler, H.M. (2017). Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microbial Genomics, 3(11), e000136. doi.org/10.1099/mgen.0.000136
Kent, A.G., Vill, A.C., Shi, Q., Satlin, M.J. & Brito, I.L. (2020). Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nature Communications, 11(1), 1–9. doi.org/10.1038/s41467-020-18164-7
Kivits, T., Broers, H.P., Beeltje, H., van Vliet, M. & Griffioen, J. (2018). Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environmental Pollution, 241, 988–998. doi.org/10.1016/j.envpol.2018.05.085
Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M. & Zhang, T. (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 9(11), 2490–2502. doi.org/10.1038/ismej.2015.59
Liu, Y., Feng, Y., Cheng, D., Xue, J., Wakelin, S. & Li, Z. (2018). Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. Bioresource Technology, 261, 249–256. doi.org/10.1016/j.biortech.2018.04.008
Lucien, M.A.B., Canarie, M.F., Kilgore, P.E., Jean-Denis, G., Fénélon, N., Pierre, M., Cerpa, M., Joseph, G.A., Maki, G., Zervos, M.J., Dely, P., Boncy, J., Sati, H., del Rio, A. & Ramon-Pardo, P. (2021). Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. International Journal of Infectious Diseases, 104(52), 250–254. doi.org/10.1016/j.ijid.2020.12.087
Macedo, G., Hernandez-Leal, L., van der Maas, P., Heederik, D., Mevius, D. & Schmitt, H. (2020). The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches. Science of the Total Environment, 737, 139563. doi.org/10.1016/j.scitotenv.2020.139563
Manaia, C.M. (2017). Assessing the risk of antibiotic resistance transmission from the environment to humans: Non-direct proportionality between abundance and risk. Trends in Microbiology, 25(3), 173–181. doi.org/10.1016/j.tim.2016.11.014
Niestępski, S., Harnisz, M., Korzeniewska, E., Aguilera-Arreola, M.G., Contreras-Rodríguez, A., Filipkowska, Z. & Osińska, A. (2019). The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. Environment International, 124, 408–419. doi.org/10.1016/j.envint.2018.12.056
Ogane, K., Tarumoto, N., Kodana, M., Onodera, A., Imai, K., Sakai, J., Kawamura, T., Takeuchi, S., Murakami, T., Mitsutake, K., Ikebuchi, K., Maesaki, S. & Maeda, T. (2020). Antimicrobial susceptibility and prevalence of resistance genes in Bacteroides fragilis isolated from blood culture bottles in two tertiary care hospitals in Japan. Anaerobe, 64, 102215. doi.org/10.1016/j.anaerobe.20 20.102215
Pauly, M., Snoeck, C.J., Phoutana, V., Keosengthong, A., Sausy, A., Khenkha, L., Nouanthong, P., Samountry, B., Jutavijittum, P., Vilivong, K., Hübschen, J.M., Black, A.P., Pommasichan, S. & Muller, C.P. (2019). Cross-species transmission of poultry pathogens in backyard farms: ducks as carriers of chicken viruses. Avian Pathology, 48(6), 503–511. doi.org/10.1080/03079457.2019.1628919
Pelfrene, E., Botgros, R. & Cavaleri, M. (2021). Antimicrobial multidrug resistance in the era of COVID-19: A forgotten plight? Antimicrobial Resistance and Infection Control, 10, 21. doi.org/10.1186/s13756-021-00893-z
Prestinaci, F., Pezzotti, P. & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. doi.org/10.1179/2047773215Y.0000000030
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heure, O.E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J.M., Segovia, C., Sigauque, B., Taconelli, E., Wellington, E. & Vila, J. (2015). The global threat of antimicrobial resistance: Science for intervention. New Microbes and New Infections, 6, 22–29. doi.org/10.1016/j.nmni.2015.02.007
Rong, S.M.M., Rodloff, A.C. & Stingu, C-S. (2021). Diversity of antimicrobial resistance genes in Bacteroides and Parabacteroides strains isolated in Germany. Journal of Global Antimicrobial Resistance, 24, 328–334. doi.org/10.1016/j.jgar.2021.01.007
Rysz, M., & Alvarez, P.J.J. (2004). Amplification and attenuation of tetracycline resistance in soil bacteria: Aquifer column experiments. Water Research, 38(17), 3705–3712. doi.org/10.1016/j.watres.2004.06.015
Shoemaker, N.B., Vlamakis, H., Hayes, K. & Salyers, A.A. (2001). Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Applied and Environmental Microbiology, 67(2), 561–568. doi.org/10.1128/AEM.67.2.561-568.2001
Sim, W-J., Lee, J-W., Lee, E-S., Shin, S-K., Hwang, S-R. & Oh, J-E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals, and pharmaceutical manufactures. Chemosphere, 82(2), 179–186. doi.org/10.1016/j.chemosph ere.2010.10.026
Soge, O.O., Tivoli, L.D., Meschke, J.S. & Roberts, M.C. (2009). A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes. Journal of Applied Microbiology, 106(1), 34–40. doi.org/10.1111/j.1365-2672.2008.03960.x
Spížek, J. & Řezanka, T. (2017). Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical Pharmacology, 133, 20–28. doi.org/10.1016/j.bcp.2016.12.001
Stipkovits, L. & Szathmary, S. (2012). Mycoplasma infection of ducks and geese. Poultry Science, 91(11), 2812–2819. doi.org/10.3382/ps.2012-02310
Székely, E., Eitel, Z., Molnár, S., Szász, I.É., Bilca, D. & Sóki, J. (2015). Analysis of Romanian Bacteroides isolates for antibiotic resistance levels and the corresponding antibiotic resistance genes. Anaerobe, 31, 11–14. doi.org/10.1016/j.anaerobe.2014.09.001
Tazumi, A., Maeda, Y., Goldsmith, C.E., Coulter, W.A., Mason, C., Millar, B.C., McCalmont, M., Rendall, J., Elborn, J.S., Matsuda, M. & Moore, J.E. (2009) Molecular characterization of macrolide resistance determinants [erm (B) and mef (A)] in Streptococcus pneumoniae and viridans group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF). Journal of Antimicrobial Chemotherapy, 64(3), 501–506. doi.org/10.1093/jac/dkp213
Teixeira, P., Dias, D., Costa, S., Brown, B., Silva, S. & Valério, E. (2020). Bacteroides spp. and traditional fecal indicator bacteria in water quality assessment – An integrated approach for hydric resources management in urban centers. Journal of Environmental Management, 271, 110989. doi.org/10.1016/j.jenvman.2020.110989
Ventola, C.L. (2015). The antibiotic resistance crisis. Part 1: Causes and threats. P&T, 40(4), 277–283.
Wang, J., Shoemaker, N.B., Wang, G-R. & Salyers, A.A. (2000). Characterization of a Bacteroides mobilizable transposon, NBU2, which carries a functional lincomycin resistance gene. Journal of Bacteriology, 182(12), 3559–3571. doi.org/10.1128/JB.182.12.3559-3571.2000
Wang, Y., Han, Y., Shen, H., Lv, Y., Zheng, W. & Wang, J. (2020). Higher prevalence of multi-antimicrobial resistant Bacteroides spp. strains isolated at a tertiary teaching hospital in China. Infection and Drug Resistance, 13:1537–1546. doi.org/10.2147/IDR.S246318
Wang, Y., Wang, G-R, Shelby, A., Shoemaker, N.B. & Salyers, A.A. (2003). A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in Gram-positive bacteria. Applied and Environmental Microbiology, 69(8), 4595–4603. doi.org/10.1128/AEM.69.8.4595-4603.2003
Wexler, H.M. (2007). Bacteroides: The good, the bad, and the nitty-gritty. Clinical Microbiology Reviews, 20(4), 593–621. doi.org/10.1128/CMR.00008-07
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)