##plugins.themes.bootstrap3.article.main##

Ali Nasir Hussein Haider Jawad. K. Al-Janabi Jawad K. Abood Al-Janabi Ali R. Shakir Al-Shujairi

Abstract

One of the most problematic and devastating diseases affecting cucumber production is Fusarium wilt (Cucumis sativus L.). The present study aimed to characterize Fusarium species isolated from three different regions of cucumber fields in Babylon province, Iraq and identify them based on morphological features and phylogenetic analyses. This study showed the presence of Fusarium incarnatum, F. solani and F. oxysporum in cucumber roots. Fusarium species were phylogenetically analyzed based on internal transcribed spacer (ITS) regions. All Fusarium isolates were pathogenic to cucumber cultivars but varied significantly in their growth and pathogenicity toward cucumber seeds during the experiment.  F. solani-2 was greater in growth and pathogenicity than all other Fusarium species. In contrast, F. solani-1 was the lowest. The data obtained from morphological and molecular studies sufficiently supported each other, and the phylogenetic trees based on ITS were distinguished. Closely related species and distinctly separated all morphological taxa. These findings are reported for the first time for the cucumber plant in Babylon province. All these ITS sequences showed homologous to those of Fusarium species isolates in the GenBank database with a similarity percentage of 99%. To the best of present knowledge, this is the first molecular record of F. incarnatum on the cucumber plants in Iraq. The study concluded that F. incarnatum was reported for the first time in Iraq and worldwide as a causal agent of wilt disease in cucumber plants. The three species of Fusarium have different pathogenic abilities, highlighting their disease incidence, growth, and pathogenicity. 


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cucumber, Fusarium species, Morphological, Molecular identification, Pathogenicity

References
Abu Bakar, A.I., Nur Ain Izzati, M. Z & Umi Kalsom Y. (2013). Diversity of Fusarium species associated with post-harvest fruit rot disease of tomato. Sains Malaysiana, 42(7),911–920. 
Ajmal, M., Hussain, A., Ali, A., Chen, H. & Lin, H. (2022). Strategies for Controlling the Sporulation in Fusarium spp. Journal of Fungi, 9(1),10. https://doi.org/10.3390/jof9010010.
Alnuaimy, A. A., Al-Janabi, J. K. A., ALObaidi, L. A. H., & Marjan, A. F. (2017). The expression of resistance genes in tomato induced by abiotic and biotic factors against Fusarium oxysporum f. sp. Lycopersici. International Journal of Chem Tech Research, 10(6), 838-850.
AL-Taae, H. H. W., & Al-Taae, A. K. (2019), First molecular identification of Fusarium oxysporum causing Fusarium wilt of Armenian cucumber in Iraq. In IOP Conference Series: Earth and Environmental Science, 388(1), 012005. doi:10.1088/1755-1315/388/1/012005.
Al-Tuwaijri, M. M. (2015). Studies on Fusarium wilt disease of cucumber. Journal of Applied Pharmaceutical Science, 5(2), 110-119. DOI: 10.7324/JAPS.2015.50216
Asma, A., Shamarina, S., Baity, S. N. & Izzati, M. N. A. (2018). Characterizations and pathogenicity of Fusarium species isolated from luffa (Luffa acutangula L. Roxb.). Malaysian Applied Biology, 47(5), 63-69.
Carling, D. E., Leiner, R. H. & Kebler, K. M., (1987). Characterization of a new anastomosis group (AG-9) of Rhizoctonia solani. Phytopathology, 77(11), 1609-
Din, H. M., Rashed, O. & Ahmad, K. (2020). Prevalence of Fusarium Wilt Disease of Cucumber (Cucumis sativus Linn) in Peninsular Malaysia Caused by Fusarium oxysporum and F. solani. Tropical life sciences research, 31(3), 29. DOI: 10.21315/tlsr2020.31.3.3
Fareed, G., Atiq, M., Abbas, M., Usman, M., Abbas, G. & Qamar, S. H. (2017). Varietal reaction of cucumber (Cucumis sativus L.) germplasm for management of Fusarium wilt of cucumber (FWC). Adv. Zool. Bot, 5, 1-3. DOI: 10.13189/azb.2017.050101
Gao, X., Wang, Y., Liu, Y., Zhang, M., Zhang, W. & Li, Y. (2020). First report of leaf spot on cucumber caused by Fusarium incarnatum in China. Plant Disease, 104(3), 973-973. https://doi.org/10.1094/PDIS-10-19-2102-PDN
Geiser, D. M., del Mar Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., ... & O'donnell, K. (2004). Fusarium-ID v. 1.0: A DNA sequence database for identifying Fusarium. European journal of plant pathology, 110, 473-479.
Ha, M. S., Ryu, H., Ju, H. J., & Choi, H. W. (2023). Diversity and pathogenic characteristics of the Fusarium species isolated from minor legumes in Korea. Scientific Reports, 13, 22516. https://doi.org/10.21203/rs.3.rs-2861442/v1.
Hussein, N. A., Al-Janabi, H. J., Al-Mashhadyc, F. R., Al-Janabi, J. K. A., & Al-Shujairi, A. R. S. (2022). Antagonistic activities of bioagent fungi Trichoderma harzianum and Pleurotus ostreatus against three species of Fusarium in cucumber plants. Asia-Pacific Journal of Molecular Biology and Biotechnology, 30(1), 12-21.
Ibrahim, N. F., Mohd, M. H., Nor, N. M. & Zakaria, L. (2015). First report of Fusarium oxysporum and F. solani associated with pineapple rot in Peninsular Malaysia. Plant Disease, 99(11), 1650-1650. https://DOI: 10.1094/PD-80-0959C.
Jedidi, I., Jurado, M., Cruz, A., Trabelsi, M. M., Said, S. & González-Jaén, M. T. (2021). Phylogenetic analysis and growth profiles of Fusarium incarnatum-equiseti species complex strains isolated from Tunisian cereals. International Journal of Food Microbiology, 353, 109297. DOI: 10.1016/j.ijfoodmicro.2021.109297
Khuna, S., Kumla, J., Thitla, T., Nuangmek, W., Lumyong, S. & Suwannarach, N. (2022). Morphology, Molecular Identification, and Pathogenicity of Two Novel Fusarium Species Associated with Postharvest Fruit Rot of Cucurbits in Northern Thailand. Journal of Fungi, 8(11), 1135. doi: 10.3390/jof8111135.
Kumar, S., Stecher, G., Li M., Knyaz, C. & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549. https://doi.org/10.1093/molbev/msy096
Leslie, J.F. & Summerell, B.A. (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Hoboken, 1-2. https://doi.org/10.1002/9780470278376.
Mao, Y. S., Zhang, Y., Zhou, M. G. & Duan, Y. B. (2020). Occurrence of crown rot disease caused by Fusarium incarnatum on cucumber (Cucumis sativus) in China. Plant Disease, 104(2), 593. https://doi.org/10.1094/PDIS-07-19-1561-PDN
Meng, L., Yao, X., Yang, Z., Zhang, R., Zhang, C., Wang, X., & Zheng, C. (2018). Changes in soil microbial diversity and control of Fusarium oxysporum in continuous cropping cucumber greenhouses following biofumigation. Emirates Journal of Food and Agriculture, 644-653. DOI: https://doi.org/10.9755/ejfa.2018.v30.i8.1752
Mohsen, L. Y., Kadhim, H. J., Janabi, J. K. A. A. & Yassiry, Z. A. N. A. (2017). Alternative culture media for growth and sporulation of Trichoderma harzianum. Pak. J. Biotechnol., 14(4), 587-593.
O’Donnell, K., Ward, T. J., Robert, V. A., Crous, P. W., Geiser, D. M. & Kang, S. (2015). DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica, 43, 583-595. https://doi.org/10.1007/s12600-015-0484-z
Oyedeji, E. O., Arogundade, O., Tairu, F. M. & Elum, C. G. (2022). Identification and characterization of fungi pathogen causing fruit rot disease of watermelon (Citrullus lanatus). Archives of Phytopathology and Plant Protection, 55(3), 344-354. https://doi.org/10.1080/03235408.2021.2019990.
Perincherry, L., Urbaniak, M., Pawłowicz, I., Kotowska, K., Waśkiewicz, A. & Stępień, Ł. (2021). Dynamics of Fusarium mycotoxins and lytic enzymes during pea plants’ infection. International Journal of Molecular Sciences, 22(18), 9888. DOI: 10.3390/ijms22189888.
Rahjoo, V., Zad, J., Javan-Nikkhah, M., Gohari, A. M., Okhovvat, S. M., Bihamta, M. R., ... & Klemsdal, S. S. (2008). Morphological and molecular identification of Fusarium isolated from maize ears in Iran. Journal of Plant Pathology, 463-468. DOI: 10.33687/phytopath.007.01.2528.
Rolim, J. M., Rabuske, J. E., Savian, L. G., Sarzi, J. S., Walker, C. & Muniz, M. F. B. (2023). Characterization of Fusarium spp. causal agent of wilt in pecan. Revista Ceres, 69, 720-730. DOI: 10.1590/0034-737x202269060011.
Sharma, D. & Shukla, A. (2021). Fusarium wilt of cucumber-A Review. International Journal of Economic Plants, 8(4), 193-200. Doi: HTTPS://DOI.ORG/10.2391 0/2/2021.0423
Singh, G., Singh, J. & Arya, S. K. (2021). Insights on guava wilt and its different control measures. Archives of Phytopathology and Plant Protection, 54(19-20), 2262-2274. DOI:10.1080/03235408.2021.1926619
Sonkar, P., Kumar, V. & Sonkar, A. (2013). Studies on cultural and morphological characters of tomato wilt (Fusarium oxysporum f. sp. lycospersici). Int. J. Biol. Sci, 10, 1637-1640.
Suresh, P., Poornima, K., Nakkeeran, S., Kalaiarasan, P. & Vijayakumar, R. M. (2019). Isolation and characterization of the causal organism of wilt in guava (Psidium guajava L.). Journal of Pharmacognosy and Phytochemistry, 8(5), 1231-1235.
Tamura K. & Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10,512-526. DOI: 10.1093/oxfordjournals.molbev.a040023
Wang, M. M., Chen, Q., Diao, Y. Z., Duan, W. J. & Cai, L. (2019). Fusarium incarnatum-equiseti complex from China. Persoonia-Molecular Phylogeny and Evolution of Fungi, 43(1), 70-89. doi: 10.3767/persoonia.2019.43.03.
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Zhang, S, Zhao X, Wang Y, Li J, Chen X, Wang A & L J. (2012). Molecular detection of Fusarium oxysporum in the infected cucumber plants and soil. Pakistan Journal of Botany 44(4), 1445–1451.
Section
Research Articles

How to Cite

Identification and characterizations of a few species of Fusarium infecting cucumber in greenhouse conditions. (2024). Journal of Applied and Natural Science, 16(1), 209-220. https://doi.org/10.31018/jans.v16i1.5297