Anti-cancer activity of crude Slrp protein conjugated mesoporous silica nanoparticles in HeLa Cell Lines: An in vitro approach
Article Main
Abstract
Microbial based therapeutics for cancer have gained a significant interest in recent decades. The present study relies on the synthesis, analysis, and conjugation of Salmonella Leucine-rich Proteins (SlrP) with mesoporous silica nanoparticles (MSNN) to evaluate their potential anticancer activity. The SlrP proteins were effectively produced and isolated from Salmonella enterica using Tryptic Soy Broth (TSB), and the subsequent SDS-PAGE analysis verified the presence of a band at around 72 KDa. The MSN synthesis yielded particles with an average diameter of 68.05±0.87 nm and a pore diameter of 7.1 nm. In addition, we synthesized MSNMPA and then conjugated them with SlrP. Characterization studies confirmed the effective conjugation. The cytotoxicity evaluation conducted on HeLa cells revealed no substantial modification in cell viability upon treatment with MSN alone. Nevertheless, when MSNMPA/SlrP was done, it demonstrated significant cytotoxic properties, as evidenced by an IC50 value of 10 µg/mL. The results indicate that SlrP-conjugated MSN (MSNMPA/SlrP) could be utilized as promising nanocarriers for delivering anticancer proteins.
Article Details
Article Details
Anti-cancer activity, Bio-conjugations, Bacterial Proteins, Mesoporous silica, Nanoparticles
Albalawi, F., M. Z. Hussein, S. Fakurazi & M. J. Masarudin (2021) Engineered nanomaterials: The challenges and opportunities for nanomedicines. International journal of nanomedicine, 161-184. https://doi.org/10.2147/IJN.S288236
Anchordoquy, T. J., Y. Barenholz, D. Boraschi, M. Chorny, P. Decuzzi, M. A. Dobrovolskaia, Z. S. Farhangrazi, D. Farrell, A. Gabizon & H. Ghandehari. 2017. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Publications. https://doi.org/10.1021/acsnano.6b08244
Asefa, T. & Z. Tao (2012) Biocompatibility of mesoporous silica nanoparticles. Chemical research in toxicology, 25, 2265-2284. https://doi.org/10.1021/tx300166u
Barrow, P. (2007) Salmonella infections: immune and non-immune protection with vaccines. Avian pathology, 36, 1-13. https://doi.org/10.1080/03079450601113167
Bernal-Bayard, J., E. Cardenal-Munoz & F. Ramos-Morales (2010) The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3. Journal of Biological Chemistry, 285, 16360-16368. https://doi.org/10.1074/jbc.M110.100669
Braun, K., C. M. Stürzel, J. Biskupek, U. Kaiser, F. Kirchhoff & M. Lindén (2018) Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in Vitro, 52, 214-221. https://doi.org/10.1016/j.tiv.2018.06.019
Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre & A. Jemal (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
Cani, P. D. (2018) Human gut microbiome: hopes, threats and promises. Gut, 67, 1716-1725. https://doi.org/10.1136/gutjnl-2018-316723
Chenthamara, D., S. Subramaniam, S. G. Ramakrishnan, S. Krishnaswamy, M. M. Essa, F.-H. Lin & M. W. Qoronfleh (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 23, 1-29. https://doi.org/10.1186/s40824-019-0166-x
Cheng Y. J., Ai-Qing Z., Jing-Jing H., Feng H., Xuan Z., and Xian-Zheng Z (2017) Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor targeting drug delivery. ACS applied materials & interfaces, 9, 2093-2103. https://doi.org/10.1021/acsami.6b12647
Cordero-Alba, M. & F. Ramos-Morales (2014) Patterns of expression and translocation of the ubiquitin ligase SlrP in Salmonella enterica serovar Typhimurium. Journal of bacteriology, 196, 3912-3922. https://doi.org/10.1128/jb.02158-14
Costas, M. (1995) The analysis of bacterial proteins by SDS polyacrylamide gel electrophoresis. Diagnostic Bacteriology Protocols, 27-40.
Cubillos-Ruiz, A., T. Guo, A. Sokolovska, P. F. Miller, J. J. Collins, T. K. Lu & J. M. Lora (2021) Engineering living therapeutics with synthetic biology. Nature Reviews Drug Discovery, 20, 941-960. https://doi.org/10.1385/0-89603-297-3:27
Dailey, K. M., J. E. Allgood, P. R. Johnson, M. A. Ostlie, K. C. Schaner, B. D. Brooks & A. E. Brooks (2021) The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiology, 16, 341-368. https://doi.org/10.2217/fmb-2020-0245
Di Pasqua, A. J., K. K. Sharma, Y.-L. Shi, B. B. Toms, W. Ouellette, J. C. Dabrowiak & T. Asefa (2008) Cytotoxicity of mesoporous silica nanomaterials. Journal of inorganic biochemistry, 102, 1416-1423. https://doi.org/10.1016/j.jinorgbio.2007.12.028
Dzutsev, A., J. H. Badger, E. Perez-Chanona, S. Roy, R. Salcedo, C. K. Smith & G. Trinchieri (2017) Microbes and cancer. Annual review of immunology, 35, 199-228. https://doi.org/10.1146/annurev-immunol-051116-052133
Ehrbar, K., A. Friebel, S. I. Miller & W.-D. Hardt (2003) Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. Journal of bacteriology, 185, 6950-6967. https://doi.org/10.1128/JB.185.23.6950-6967.2003
Farjadian, F., A. Roointan, S. Mohammadi-Samani & M. Hosseini (2019) Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 359, 684-705. https://doi.org/10.1016/j.cej.2018.11.156
Figueroa‐Bossi, N., S. Uzzau, D. Maloriol & L. Bossi (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Molecular microbiology, 39, 260-272. https://doi.org/10.1046/j.1365-2958.2001.02234.x
Florek, J., R. Caillard & F. Kleitz (2017) Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale, 9, 15252-15277. https://doi.org/10.1039/C7NR05762H
Forbes, N. S. (2010) Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10, 785-794. https://doi.org/10.1038/nrc2934
Frickenstein, A. N., J. M. Hagood, C. N. Britten, B. S. Abbott, M. W. McNally, C. A. Vopat, E. G. Patterson, W. M. MacCuaig, A. Jain & K. B. Walters (2021) Mesoporous silica nanoparticles: Properties and strategies for enhancing clinical effect. Pharmaceutics, 13, 570. https://doi.org/10.3390/pharmaceutics13040570
Gao, F., Y. Liu, C. Lei, C. Liu, H. Song, Z. Gu, P. Jiang, S. Jing, J. Wan & C. Yu (2021) The role of dendritic mesoporous silica nanoparticles’ size for quantum dots enrichment and lateral flow immunoassay performance. Small Methods, 5, 2000924. https://doi.org/10.1002/smtd.202000924
Gu, L., A. Zhang, K. Hou, C. Dai, S. Zhang, M. Liu, C. Song & X. Guo (2012) One-pot hydrothermal synthesis of mesoporous silica nanoparticles using formaldehyde as growth suppressant. Microporous and Mesoporous Materials, 152, 9-15. https://doi.org/10.1016/j.micromeso.2011.11.047
Guirnalda, P., L. Wood, M. Seavey & Y. Paterson (2012) Intracellular Facultative Bacterial Vectors for Cancer Immunotherapy. Vaccinology: Principles and Practice, 255-274. https://doi.org/10.1002/9781118345313.ch17
Haraga, A. 2005. Study of the intracellular function of the Salmonella enterica serovar Typhimurium type III secretion effector SspH1. University of Washington. https://doi.org/10.1111/j.1462-5822.2005.00670.x
Hossen, S., M. K. Hossain, M. Basher, M. Mia, M. Rahman & M. J. Uddin (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of advanced research, 15, 1-18. https://doi.org/10.1016/j.jare.2018.06.005
Huang, X., J. Pan, F. Xu, B. Shao, Y. Wang, X. Guo & S. Zhou (2021) Bacteria‐based cancer immunotherapy. Advanced Science, 8, 2003572. https://doi.org/10.1002/advs.202003572
Hurley, D., M. P. McCusker, S. Fanning & M. Martins (2014) Salmonella–host interactions–modulation of the host innate immune system. Frontiers in immunology, 5, 481. https://doi.org/10.3389/fimmu.2014.00481
Jafari, M., B. Zargar, M. Soltani, D. N. Karunaratne, B. Ingalls & P. Chen (2012) Intelligent drug delivery systems for cancer therapy. Biomedical Materials and Diagnostic Devices, 477-513. https://doi.org/10.1002/9781118523025.ch15
Jafari, S., H. Derakhshankhah, L. Alaei, A. Fattahi, B. S. Varnamkhasti & A. A. Saboury (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111. https://doi.org/10.1016/j.biopha.2018.10.167
Kaasalainen, M., V. Aseyev, E. von Haartman, D. Ş. Karaman, E. Mäkilä, H. Tenhu, J. Rosenholm & J. Salonen (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale research letters, 12, 1-10. https://doi.org/10.1186/s11671-017-1853-y
Kalia, V. C., S. K. Patel, B.-K. Cho, T. K. Wood & J.-K. Lee. 2022. Emerging applications of bacteria as antitumor agents. In Seminars in Cancer Biology, 1014-1025. Elsevier. https://doi.org/10.1016/j.semcancer.2021.05.012
Kankala, R. K., H. Zhang, C. G. Liu, K. R. Kanubaddi, C. H. Lee, S. B. Wang, W. Cui, H. A. Santos, K. Lin & A. Z. Chen (2019) Metal species–encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs. Advanced Functional Materials, 29, 1902652. https://doi.org/10.1002/adfm.201902652
Keshavarz, M. & N. Ahmad (2013) Characterization and modification of mesoporous silica nanoparticles prepared by sol-gel. Journal of Nanoparticles, 2013. https://doi.org/10.1155/2013/102823
Kobler, J., K. Möller & T. Bein (2008) Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS nano, 2, 791-799. https://doi.org/10.1021/nn700008s
Kuznetsov, M., J. Clairambault & V. Volpert (2021) Improving cancer treatments via dynamical biophysical models. Physics of life reviews, 39, 1-48. https://doi.org/10.1016/j.plrev.2021.10.001
Layton, A. N. & E. E. Galyov (2007) Salmonella-induced enteritis: molecular pathogenesis and therapeutic implications. Expert Reviews in Molecular Medicine, 9, 1-17. https://doi.org/10.1017/S1462399407000373
Leschner, S., K. Westphal, N. Dietrich, N. Viegas, J. Jablonska, M. Lyszkiewicz, S. Lienenklaus, W. Falk, N. Gekara & H. Loessner (2009) Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PloS one, 4, e6692. https://doi.org/10.1371/journal.pone.0006692
Liang, K., Q. Liu, P. Li, H. Luo, H. Wang & Q. Kong (2019) Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer letters, 448, 168-181. https://doi.org/10.1016/j.canlet.2019.01.037
Lin, C.-Y., C.-M. Yang & M. Lindén (2019) Influence of serum concentration and surface functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC advances, 9, 33912-33921. DOI https://doi.org/10.1039/C9RA05585A
Liu, X., F. Wu, Y. Ji & L. Yin (2018) Recent advances in anti-cancer protein/peptide delivery. Bioconjugate chemistry, 30, 305-324. https://doi.org/10.1021/acs.bioconjchem.8b00750
Lu, Y.-Y. 2015. Modulation of host immune responses by Bartonella effector proteins. University_of_Basel.
Lugano, R., M. Ramachandran & A. Dimberg (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. https://doi.org/10.1007/s00018-019-03351-7
Maggini, L., I. Cabrera, A. Ruiz-Carretero, E. A. Prasetyanto, E. Robinet & L. De Cola (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 8, 7240-7247. https://doi.org/10.1039/C5NR09112H
Manzano, M. & M. Vallet‐Regí (2020) Mesoporous silica nanoparticles for drug delivery. Advanced functional materials, 30, 1902634. https://doi.org/10.1002/adfm.201902634
Martín, M. J., F. Lara-Villoslada, M. A. Ruiz & M. E. Morales (2015) Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. https://doi.org/10.1016/j.ifset.2014.09.010
Mohseni, M., K. Gilani & S. A. Mortazavi (2015) Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iranian journal of pharmaceutical research: IJPR, 14, 27.
Nuti, R., N. S. Goud, A. P. Saraswati, R. Alvala & M. Alvala (2017) Antimicrobial peptides: a promising therapeutic strategy in tackling antimicrobial resistance. Current medicinal chemistry, 24, 4303-4314. https://doi.org/10.2174/0929867324666170815102441
Parasuraman, P., A. P. Antony, A. Sharan, B. Siddhardha, K. Kasinathan, N. A. Bahkali, T. M. Dawoud & A. Syed (2019) Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling, 35, 89-103. https://doi.org/10.1080/08927014.2019.1570501
Pucci, C., C. Martinelli & G. Ciofani (2019) Innovative approaches for cancer treatment: Current perspectives and new challenges. ecancermedicalscience, 13. https://doi.org/10.3332/ecancer.2019.961
Rameli, N., K. Jumbri, R. Wahab, A. Ramli & F. Huyop. 2018. Synthesis and characterization of mesoporous silica nanoparticles using ionic liquids as a template. In Journal of Physics: Conference Series, 012068. IOP Publishing. https://doi.org/10.1088/1742-6596/1123/1/012068
Ramos-Morales, F. (2012) Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. International Scholarly Research Notices, 2012. https://doi.org/10.5402/2012/787934
Rook, G. A. & A. Dalgleish (2011) Infection, immunoregulation, and cancer. Immunological reviews, 240, 141-159. https://doi.org/10.1111/j.1600-065X.2010.00987.x
Roy, S. & G. Trinchieri (2017) Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 17, 271-285. https://doi.org/10.1038/nrc.2017.13
Sedighi, M., A. Zahedi Bialvaei, M. R. Hamblin, E. Ohadi, A. Asadi, M. Halajzadeh, V. Lohrasbi, N. Mohammadzadeh, T. Amiriani & M. Krutova (2019) Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer medicine, 8, 3167-3181. https://doi.org/10.1002/cam4.2148
Shelburne, N., B. Adhikari, J. Brell, M. Davis, P. Desvigne-Nickens, A. Freedman, L. Minasian, T. Force & S. C. Remick (2014) Cancer treatment–related cardiotoxicity: current state of knowledge and future research priorities. Journal of the National Cancer Institute, 106, dju232. https://doi.org/10.1093/jnci/dju232
Tang, F., L. Li & D. Chen (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials, 24, 1504-1534. https://doi.org/10.1002/adma.201104763
Toussaint, B., X. Chauchet, Y. Wang, B. Polack & A. L. Gouëllec (2013) Live-attenuated bacteria as a cancer vaccine vector. Expert review of vaccines, 12, 1139-1154. https://doi.org/10.1586/14760584.2013.836914
Tsakalidou, E., E. Manolopoulou, E. Kabaraki, E. Zoidou, B. Pot, K. Kersters & G. Kalantzopoulos (1994) The combined use of whole-cell protein extracts for the identification (SDS-PAGE) and enzyme activity screening of lactic acid bacteria isolated from traditional Greek dairy products. Systematic and Applied Microbiology, 17, 444-458. https://doi.org/10.1016/S0723-2020(11)80062-7
Van Mellaert, L., S. Barbé & J. Anné (2006) Clostridium spores as anti-tumour agents. TRENDS in Microbiology, 14, 190-196. https://doi.org/10.1016/j.tim.2006.02.002
Vyshnava, S. S., D. K. Kanderi & M. R. Dowlathabad (2022a) Confocal laser scanning microscopy study of intercellular events in filopodia using 3-mercaptopropoinc acid capped CdSe/ZnS quantum dots. Micron, 153, 103200. https://doi.org/10.1016/j.micron.2021.103200
Vyshnava, S. S., G. Pandluru, D. K. Kanderi, S. P. Panjala, S. Banapuram, K. Paramasivam, R. R. Anupalli, R. R. Bontha & M. R. Dowlatabad (2020) Gram scale synthesis of QD 450 core–shell quantum dots for cellular imaging and sorting. Applied Nanoscience, 10, 1257-1268. https://doi.org/10.1007/s13204-020-01261-w
Vyshnava, S. S., G. Pandluru, K. D. Kumar, S. P. Panjala, S. Banapuram, K. Paramasivam, K. V. Devi, R. R. Anupalli & M. R. Dowlatabad (2022b) Quantum dots based in-vitro co-culture cancer model for identification of rare cancer cell heterogeneity. Scientific Reports, 12, 5868. https://doi.org/10.1038/s41598-022-09702-y
Vyshnava, S. S., G. Pandluru, K. D. Kumar, S. P. Panjala, K. Paramasivam, S. Banapuram, R. R. Anupalli & M. R. Dowlatabad (2022c) Biocompatible Ni‐doped CdSe/ZnS semiconductor nanocrystals for cellular imaging and sorting. Luminescence, 37, 490-499. https://doi.org/10.1002/bio.4199
Wang, Y., N. Han, Q. Zhao, L. Bai, J. Li, T. Jiang & S. Wang (2015) Redox-responsive mesoporous silica as carriers for controlled drug delivery: a comparative study based on silica and PEG gatekeepers. European journal of pharmaceutical sciences, 72, 12-20. https://doi.org/10.1016/j.ejps.2015.02.008
Wei, M. Q., A. Mengesha, D. Good & J. Anné (2008) Bacterial targeted tumour therapy-dawn of a new era. Cancer letters, 259, 16-27. https://doi.org/10.1016/j.canlet.2007.10.034
Wong, S. H. & J. Yu (2019) Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology, 16, 690-704. https://doi.org/10.1038/s41575-019-0209-8
Zargar, B. (2014) A Synthetic Biology Approach to Bacteria Mediated Tumor Targeting.
Zhang, J., X. Li, J. M. Rosenholm & H.-c. Gu (2011) Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of colloid and interface science, 361, 16-24. https://doi.org/10.1016/j.jcis.2011.05.038
Zouhir, S., J. Bernal-Bayard, M. Cordero-Alba, E. Cardenal-Munoz, B. Guimaraes, N. Lazar, F. Ramos-Morales & S. Nessler (2014) The structure of the Slrp–Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family. Biochemical Journal, 464, 135-144. https://doi.org/10.1042/BJ20140587
Zugazagoitia, J., C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo & L. Paz-Ares (2016) Current challenges in cancer treatment. Clinical therapeutics, 38, 1551-1566. https://doi.org/10.1016/j.clinthera.2016.03.026
Zygouropoulou, M., A. Kubiak, A. V. Patterson & N. P. Minton (2019) Genetic Engineering of Clostridial Strains for Cancer Therapy. Microbial Infections and Cancer Therapy, https://doi.org/10.1201/9781351041904-3
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)