Hala M.N. Al-saily Walaa Salih Hassan Halla Abdul-Hadi Chabuk


Spirulina platensis is blue-green algae received significant attention for its high nutritional value, it is a source of powerful antioxidants. The cytotoxicity of crude extract is not well recorded. The aim of current study to evaluate the cytotoxicity of S. platensis extracts on colon cancer (CaCo-2), hepatic cancer (HepG2) cell lines, normal fibroblast cells line (HdFn) and also antioxidant activity. The percent of 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity was determined for serial concentrations of extract ranging from 3.125 to 200 μg/ml. Cell lines were treated for 24 hours with different concentrations of extract ranging from 25 to 400 µg/ml. Cell viability testing using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay which determined how the extract affected caspase 9 activity. The results revealed that extract had moderate antioxidant activity, showing the DPPH scavenging activity reached 58% in a concentration of 200μg/ml, and IC50 was 95.84 μg/ml. The extract significantly decreased CaCo-2 cell viability with IC50 99.12 µg/ml, compared to HdFn viability with IC50 157.6 µg/ml. On CaCo-2 cells, the extract's cytotoxicity was more evident (P< 0.05) than HdFn cells. The extract had more significant (P<0.05) cytotoxicity on cancer cell lines and also significantly decreased the viability of HepG2 cells with IC50 167.4 µg/ml, than the viability of HdFn with IC50 214.9 μg/ml. The extract revealed significantly higher (P< 0.05) cytotoxicity against HepG2 cells than the normal HdFn cells. This study concluded that the extract exerted a dose-dependent anti-proliferation effect on CaCo-2 cells and HepG2 cells by comparing them with HdFn cells.




Anticancer agent, Antioxidant, cancer cells Ethanolic extract, Spirulina platensis

El-Chaghaby, G., Rashad, S., F Abdel-Kader, S., A Rawash, E. S. & Abdul Moneem, M. (2019). Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts. Egyptian Journal of Aquatic Biology and Fisheries, 23(4), 521-526.‏
Alghamdi, M. A., Reda, F. M., Mahmoud, H. K., Bahshwan, S. M., Salem, H. M., Alhazmi, W. A. & Abdelgeliel, A. S. (2023). The potential of Spirulina platensis to substitute antibiotics in Japanese quail diets: impacts on growth, carcass traits, antioxidant status, blood biochemical parameters, and caecal microorganisms. Poultry Science, 103350.‏ https://doi.org/10.1016/j.psj.2023.10 3350
Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K. & de la Lastra, J. M. P. (2022). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases.‏ 10(4):  1367-1401. https://doi.org/10.1016/j.gendis.2022.02.007
Bandarnayake, W. M. (2002). Bioactivities, Bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecological Management, 10: 421-452.
Basumatary, A.R. (2016). Preliminary Phytochemical Screening of some compounds from plant stem bark extracts of Tabernaemontana divaricata Linn. used by Bodo Community at Kokrajhar District, Assam, India. Archives of Applied Science Research.; 8(8), :47-52.
Chih, P.L., Wei, J.T., Yuang, L.L. & Yuh, C.K. (2004). The extracts from Nelumbonucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells.Life Science, 75, 699-716.
Choi, Y.J., Gurunathan, S. & Kim, J.H. (2018). Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. International journal of molecular sciences, 19(3),710. https://doi.org/10.3390/ijms19030710.
Costantini, P., Bruey, J. M., Castedo, M. & Loeffler, M. (2002). Pre-processed caspase-9 contained in mitochondira participates in apoptosis. Cell death and differentiation. 9(1), 82-88.
Czerwonka, A., Kalawaj, K., Slawinska-Brych, A., Lemieszek, M.K., Bartnik, M., Wojtanowski, K.K., Zdzisinska, B. & Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine and Pharmacotherapy, 106: 292-302. https://doi.org/10.1016/j.biopha.2018.06.116.
Deepa, M.& Padmaja, C. K. (2014). Preliminary Phytochemical Analysis and thin Layer Chromatography Of the Extracts Of Excoecaria Agallochal. International Journal of Pharmaceutical Science and Research, 1(56), 4535-4542.
Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C. & Cho, W. C. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer cell international, 22(1), 1-20.‏ https://doi.org/10.1186/s12935-022-02624-9.
Ekpenyong, C. E., Akpan, E. E., & Udoh, N. S. (2012). Phytochemistry and toxicity studies of Telfairia occidentalis aqueous leaves extract on liver biochemical indices in wistar rats. American Journal of Medicine and Medical Sciences, 2(5), 103-110.‏
Farag, O.M., Abd-Elsalam, R.M., El Badawy, S.A., Ogaly, H.A., Alsherbiny, M.A. & Ahmed, K.A. (2021). Portulaca oleracea seeds’ extract alleviates acrylamide-induced testicular dysfunction by promoting oxidative status and steroidogenic pathway in rats. BMC Complementary Medicine and Therapies, 21(1), 1-15. https://doi.org/10.1186/s12906-021-03286-2.
Fayyad, R. J., Ali, A. N. M., Dwaish, A. S. & Al-Abboodi, A. K. A. (2019). Anticancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell line. Plant Archs, 19(1), 1419-26.‏
Freshney, R.I. (2012). Culture of Animal Cell. Sixth Edition.WilyLiss,New York.
Garcia-Vaquero, M. (2023). Green extraction of bioactive compounds from microalgae and seaweeds. In Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 115-147). Woodhead Publishing.‏
Gao, X., Yanan, J., Santhanam, R.K., Wang, Y., Lu, Y., Zhang, M. & Chen, H. (2021). Garlic flavonoids alleviate H2O2 induced oxidative damage in L02 cells and induced apoptosis in HepG2 cells by Bcl‐2/Caspase pathway. Journal of Food Science, 86(2). 366-375. https://doi.org/10.1111/1750-3841.15599.
Ge, Y.; Kang, Y.K.; Dong, L.; Liu, L.H. & An, G.Y. (2019). The efficiacy of dietary Spirulina as an adjunct to chemotherapy to improve immune function and reduce myelosuppression in patients with malignant tumours. Translational Cancer Gentscheva Research, 8(4): 1065-1073. https://doi.org/10.21037%2Ftcr.2019.06.13.
Gentscheva, G., Nikolova, K., Panayotova, V., Peycheva, K., Makedonski, L., Slavov, P. & Yotkovska, I. (2023). Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life, 13(3): 845.‏ https://doi.org/10.3390/life13030845.
Ghobashy, R.S., Elsheekh, M.M., Ismail, G.A. & Gheda, S.F.( 2021). Biosynthesis of metal nanoparticles using blue-green algae (Cyanobacteria) and their possible applications (M. Sc thesis). International Journal of Cancer and Biomedical Research.5(0): 1-6. https://doi.org/10.21608/jcbr.2021.59664.1133.
Gouda, M., Huang, Z., Liu, Y., He, Y. & Li, X. (2021). Physicochemical impact of bioactive terpenes on the microalgae biomass structural characteristics. Bioresource Technology, 334, 125232.‏
Han, Q., Huang, L., Wang, Y., Sun, S., Huang, H., Li, F., Wang, F., Chen, L., Zhang, H. & Wang, Y.( 2021). Platinum (II)-coordinated Portulaca oleracea polysaccharides as metal-drug based polymers for anticancer study. Colloids and Surfaces B: Biointerfaces, 201:111628. https://doi.org/10.1016/j.colsurfb.2021.111628.
Huang, K.C.Y., Chiang, S.F., Yang, P.C., Ke, T.W., Chen, T.W., Hu, C.H., Huang, Y.W., Chang, H.Y., Chen, W.T.L. &Chao, K.S. (2021). Immunogenic Cell Death by the Novel Topoisomerase I Inhibitor TLC388 Enhances the Therapeutic Efficacy of Radiotherapy. Cancers, 13(6), p.1218. https://doi.org/10.3390/cancers13061218.
Kale, J., Osterlund, E.J. & Andrews, D.W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death & Differentiation, 25(1), pp.65-80.
Kapoor, B., Gulati, M., Gupta, R., Singh, S. K., Gupta, M., Nabi, A. & Chawla, P. A. (2021). A review on plant flavonoids as potential anticancer agents. Current Organic Chemistry, 25(6), 737-747.‏
Kamran, S., Sinniah, A., Abdulghani, M. A. & Alshawsh, M. A. (2022). Therapeutic potential of certain terpenoids as anticancer agents: a scoping review. Cancers, 14(5): 1100.‏ https://doi.org/10.3390/cancers14051100.
Kerkhofs, M., La Rovere, R., Welkenhuysen, K., Janssens, A., Vandenberghe, P., Madesh, M., Parys, J.B. & Bultynck, G. ( 2021). BIRD-2, a BH4-domain-targeting peptide of Bcl-2, provokes Bax/Bak-independent cell death in B-cell cancers through mitochondrial Ca2+-dependent mPTP opening. Cell Calcium, 94:102333.
Kopustinskiene, D. M., Jakstas, V., Savickas, A. & Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2): 457.‏ http://dx.doi.org/10.3390/nu12020457.
Kumar, A., Ramamoorthy, D., Verma, D. K., Kumar, A., Kumar, N., Kanak, K. R. & Mohan, K. (2022). Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus, 6:100070.‏ https://doi.org/10.1016/j.nexus.2022.100070.
Kumar, V., & Jat, R. K. (2018). Phytochemical estimation of medicinal plant Achyranthes aspera Root. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 3(1), 190-193.‏
Kumar, N.; Mueen, A. K. K.; Dang, R. & Husain, A. (2008). Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone. J. Med. Plants Res. 2: 361-364.
Madadi, Z., Akbari-Birgani, S., Mohammadi, S., Khademy, M. & Mousavi, S.A.,( 2021). The effect of caspase-9 in the differentiation of SH-SY5Y cells. European Journal of Pharmacology, 904:174138. https://doi.org/10.1016/j.ejphar.2021.174138.
Miranda, M. S., Cintra, R. G., Barros, S. B. D. M. & Mancini-Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and biological research, 31, 1075-1079.‏.
Obouayeba AP, Diarrassouba M, Soumahin EF, Kouakou TH.( 2015). Phytochemical Analysis, Purification and Identification of Hibiscus Anthocyanins. Journal of Pharmaceutical, Chemical and Biological Sciences.; 3(2),156-168.
Patra J .K. , Mahopatra A. D. , Rath S. K. , Dhal N. K. & Thatoi H.(2009).Screening of antioxidant and antifilarial activity of leaf extracts of Excoecaria agallocha L. International Journal of Interactive Biology .7(1), 9-15.
Panaite, T. D., Cornescu, G. M., Predescu, N. C., Cismileanu, A., Turcu, R. P., Saracila, M. & Soica, C. (2023). Microalgae(Chlorella vulgaris and Spirulina platensis) as a protein alternative and their effects on productive performances, blood parameters, protein digestibility, and nutritional value of laying hens’ egg. Applied Sciences, 13(18): 10451.‏ https://doi.org/10.3390/app131810451.
Plassmeyer, M., Alpan, O., Corley, M.J., Premeaux, T.A., Lillard, K., Coatney, P., Vaziri, T., Michalsky, S., Pang, A.P., Bukhari, Z. & Yeung, S.T.,(2021). Caspases and therapeutic potential of caspase inhibitors in moderate‐severe SARS CoV2 infection and long COVID. Allergy, 77(1): 118–129.https://doi.org/10.1111%2Fall.14907.
Qaisar, N., Chaudhary, B. A., Dasti, A., Malik, A. & Zafar, R. (2009). Phytochemical study of aerial parts of Lantana camara for the pharmacological active compounds materials and method : Test, 1(1): 19–26.
Raaman, N. (2006). Phytochemical Techniques. New India Publishing.‏
Rahman, M.A. & Ahmed, N.U.( 2013). Phytochemical and biological activities of ethanolic extract of C. hirsute leaves. Bangladesh Journal of Scientific and Industrial Research.; 48(1),43-50.
Roozi, H., Akbar Boojar, M.M., Eidi, A. & Khavari-Nejad, R. (2021). The effect of portulaca oleracea alkaloids on antidiabetic properties through changes in ceramide metabolism. Egyptian Journal of Basic and Applied Sciences, 8(1),156-166. https://doi.org/10.1080/ 2314808X. 2021. 1877889.
Saffaryazdi, A., Ganjeali, A., Farhoosh, R. & Cheniany, M.( 2020). Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7),1519-1529. https://doi.org/10.1007%2Fs12298-020-00836-9,
Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International journal of oncology, 54(2): 407-419.‏ DOI: 10.3892/ijo.2018.4661
Silva, G.O., Abeysundara, A.T. & Aponso, M.M. ( 2017). Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. American Journal of Essential Oils and Natural Products, 5(2),29-32.
Singh, V. & Kumar, R. (2017). Study of phytochemical analysis and antioxidant activity of Allium sativum of Bundelkhand region. International Journal of Life Sciences Scientific Research, 3(6),1451-1458.
Thangaraj, M., Saravana, B. P., Thanasekaran, J., Joen-Rong, S., Manubolu, M. & Pathakoti, K. (2022). Phytochemicals of algae, Arthospira platensis (spirulina) Chlorella vulgaris (Cchlorella) and Azolla pinnata (Aazolla). GSC Biological and Pharmaceutical Sciences, 19(2), 023-043. https://doi.org/10.30574/gscbps.2022.19.2.0167.
Tzachor, A., Smidt-Jensen, A., Ramel, A. & Geirsdóttir, M. (2022). Environmental impacts of large-scale Spirulina (Arthrospira platensis) production in hellisheidi geothermal park iceland: Life cycle assessment. Marine Biotechnology, 24(5), 991-1001.‏ https://doi.org/10.1007/s10126-022-10162-8.
Wu, G., Tu, Z., Yang, F., Mai, Z., Chen, H., Tang, Q., Ye, X., Wang, K., Wang, X. & Chen, T. (2021). Evaluating the inhibitory priority of Bcl‐xL to Bad, tBid and Bax by using live‐cell imaging assay. Cytometry Part A. Translational Cancer Research, 8(4), 1065-1073. DOI: 10.1002/cyto.a.24351.
Zaid, A.A.A., Hammad, D.M. & Sharaf, E.M. (2015). Antioxidant and anticancer activity of Spirulina water extracts. International Journal of Pharmacology, 11(7),846-851.
Research Articles

How to Cite

Anti-oxidant and cytotoxic activity of Spirulina platensis ethanolic extract against Caco-2 and HepG2 cancer cell lines. (2024). Journal of Applied and Natural Science, 16(1), 325-333. https://doi.org/10.31018/jans.v16i1.5280