Impact of foliar spray of nano-Zn and nano-Cu on biochemical characteristics of guava cv. Allahabad Safeda
Article Main
Abstract
Foliar spraying of nanoparticles (NPs) improves the absorption of plant nutrient application compared to traditional soil–root application, and it also enhances the yield and quality of fruits. The present study aimed to evaluate the qualitative effects of foliar sprays of two concentrations of nano-zinc and nano-copper (40 ppm, 60 ppm; 20 ppm, 30 ppm respectively), in comparison to ZnSo4 (recommended by, Punjab Agriculture University, Ludhiana) and control (foliar spray of water) on the guava crop (var. Allahabad Safeda). The experiment was conducted at Lovely Professional University Research farm, Phagwara, Jalandhar (Punjab) by applying a simple randomized block design, with ten treatments applied as T1: control, T2: nano-Zn1, T3: nano-Zn2, T4: nano-Cu1, T5: nano-Cu2, T6: nano-Zn1+ nano-Cu1, T7: nano-Zn1+ nano-Cu2, T8: nano-Zn2 + nano-Cu1, T9: nano-Zn2 + nano-Cu2, T10: ZnSO4 (PAU recommendation) in three replications. The treatments were sprayed two times, first at the flowering stage and second when the fruit reached pea size. The nutrient spray increases the concentration of nutrients in the leaves while also affecting the biochemical parameters. The performance for total soluble solids (9.89°B), total sugars (8.74%), titratable acidity (0.98%), antioxidants (7.49%), firmness (5.71kg/cm2), non-reducing sugars (3.32%), Vitamin-C (268.90mg/100g pulp), pectin content (2.13%), reducing sugars (5.46%), and TSS/acid ratio (10.06) was superior with the application of nano-Zn2 + nano-Cu2 (T9). The application of nano-micronutrients (zinc and copper) in combination is favorable for the quality of guava fruit (Allahabad Safeda).
Article Details
Article Details
Foliar application, Guava, nano-Cu, Nano-nutrients, Nano-Zn
Anand, V., Arumugam, S., Rengasamy Lakshminarayanan Rengarajan, P. & Sampathkumar, R. (2020). Bioactive compounds of guava (Psidium guajava L.). In Bioactive Compounds in Underutilized Fruits and Nuts, page 503–527.
Baweja, P., Kumar, S. & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. In Soil Biology (265–285). https://doi.org/10.1007/978-3-030-44364-1_15
Bisma, T., Bilal Pirzadah, A. & Jan, K. R. (2020). Nanofertilizers: a way forward for green economy. Nanobiotechnology in Agriculture: An Approach Towards Sustainability, 99–112.
Chandrakala, V., Aruna, V. & Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Materials, 5(6), 1593–1615. https://doi.org/10.1007/s42247-021-00335-x
Chen, Z., Bertin, R. & Froldi, G. (2013). EC50 estimation of antioxidant activity in DPPH· assay using several statistical programs. Food Chemistry, 138(1), 414–420. https://doi.org/10.1016/j.foodchem.2012.11.001
Fao, W. (2009). Principles and methods for the risk assessment of chemicals in food. Environmental Health Criteria, 240.
Fatima, F., Hashim, A. & Anees, S. (2021). Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research International, 28(2), 1292–1303. https://doi.org/10.1007/s11356-020-11218-9
Francis, D. V., Sood, N. & Gokhale, T. (2022). Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 11(20), 2776. https://doi.org/10.3390/plants11202776
Hernández, H., Hernández, A., Benavides-Mendoza, H., Ortega-Ortiz, A. D. & Hernández-Fuentes, A. (2017). Cu Nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emirates Journal of Food and Agriculture, 29(8), 573–580.
Hipólito, T., Quiterio-Gutiérrez, G., Cadenas-Pliego, H., Ortega-Ortiz, A. D., Hernández-Fuentes, M., Cabrera De La Fuente, J. & Valdés-Reyna, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8.
Hussain, S., Zameer, B., Naseer, T., Qadri, T. & Fatima, T. A. (2021). Guava (Psidium Guajava)-Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits (page 257–267).
Ilyas, A., Ashraf, M. Y., Hussain, M., Ashraf, M., Ahmed, R. & Kamal, A. (2015). Effect of micronutrients (Zn, Cu and B) on photosynthetic and fruit yield attributes of Citrus reticulata Blanco var. kinnow. Pak. J. Bot, 47(4), 1241–1247.
Iqbal, M. (2019). Nano-fertilizers for sustainable crop production under changing climate: a global perspective. Sustainable Crop Production, 8, 1–13.
Kumar, A., Mishra, A. K., Saroj, S. & Joshi, P. K. (2019). Impact of traditional versus modern dairy value chains on food security: Evidence from India’s dairy sector. Food Policy, 83, 260–270. https://doi.org/10.1016/j.foodpol.2019.01.010
Mahaveer, P. D. & Sangma, D. (2017). Role of micronutrients (fe). Int. J. Curr. Microbiol. App. Sci, 6(6), 3240–3250.
Mali, D. S., Sonavane, P. N., Handal, B. B. & Ranpise, S. A. (2023). Assessment of harvesting index by adapting different pruning levels in guava (Psidium guajava L.) Cv. Sardar. The Pharma Innovation Journal, 12(6), 1095-1098
Manjunatha, S. B., Biradar, D. P. & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. J Farm Sci, 29(1), 1–13.
Mokdad, A. H., Forouzanfar, M. H., Daoud, F., Mokdad, A. A., El Bcheraoui, C., Moradi-Lakeh, M., Kyu, H. H., Barber, R. M., Wagner, J., Cercy, K., Kravitz, H., Coggeshall, M., Chew, A., O’Rourke, K. F., Steiner, C., Tuffaha, M., Charara, R., Al-Ghamdi, E. A., Adi, Y., Murray, C. J. L. (2016). Global burden of diseases, injuries, and risk factors for young people’s health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 387(10036), 2383–2401. https://doi.org/10.1016/S0140-6736(16)00648-6
Qureshi, A., Singh, D. K. & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325–3335. https://doi.org/10.20546/ijcmas.2018.702.398
Rajkumar, J. T. (2014). Effect of foliar application of zinc and boron on fruit yield and quality of winter season Guava (Psidium guajava) cv. Pant Parbhat. Annals of Agri-Bio Research, 19(1), 105–108.
Rana, R., Siddiqui, M., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D., Mahmud, N. & Islam, T. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332. https://doi.org/10.3390/horticulturae7100332
Ranganna, S. (1977). Manual of analysis fruits and vegetables. Fruit and Vegetable Products (page 1–3).
Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education. 2Rev Ed edition.
Singh, A., Kumar, R., Pal, G., Abrol, S., Punetha, P., & Sharma, A. K. (2019). Nutritional and medicinal value of underutilized fruits. Acta Scientific Agriculture, 3(1), 16–22.
Singh, S., Nand, N., Singh, G. & Bains, O. (2023). Effect of foliar application of zinc oxide nanoparticles on biochemical characteristics of guava (Psidium guajava L.) cv. VNR Bihi. The Pharma Innovation Journal, 12(9), 575-577
Solanki, P., Bhargava, A., Chhipa, H., Jain, N. & Panwar, J. (2015). Nano-fertilizers and their smart delivery system. In Nanotechnologies in Food and Agriculture (page 81–101). https://doi.org/10.1007/978-3-319-14024-7_4
Yadav, R. K. (2014). Impact of micronutrients on fruit set and fruit drop of winter season guava (Psidium guajava L.) cv. Allahabad safeda. Indian Journal of Science and Technology, 7(9), 1451–1453. https://doi.org/10.17485/ijst/2014/v7i9.30
Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A. & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science: An International Journal of Experimental Plant Biology, 289(110270), 110270. https://doi.org/10.1016/j.plantsci.20 19.110270
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)