Food additives and brain complications: A risk to public health
Article Main
Abstract
Food additives comprise the amounts of xenobiotics that are known to affect the physiological metabolic pathways of living tissues. Although organic and inorganic chemicals are considered xenobiotics, organic compounds, the basic chemical entity for most constituents, are reported to be responsible for 80-90% xenobiotics-induced toxicity. Food additives have been the major source of generating these harmful toxins in the human population. Exposure to xenobiotics via dietary habits, environment or medication is inexorable in living creatures. Reports have shown the bidirectional interaction between xenobiotics and biological systems. When ingested, xenobiotics induce physiological, biochemical or pathological changes in the biological system. One study reported that exposure to titanium dioxide nanoparticles can cause cytotoxicity of glial cells and hippocampal neurons, leading to brain damage and changes in hippocampal function, which plays a vital role in the process of memory and learning. Therefore, the complexity and limited plasticity of the brain has always challenged researchers to seek solutions to neuronal and cognitive problems. Including new compounds in the food in the form of pesticides, preservatives, additives, and coloring agents in daily meals is the latest aspect of gene-environment interaction. The sporadic cause of neurodegenerative diseases and its epidemiological distribution can be better understood and countermeasures can be applied only if this relationship is represented quantitatively. Hence, this review focuses on the effect of food additives as xenobiotics, which leads to the potential for a compromised nervous system.
Article Details
Article Details
Brain Health, Food Additives, Neurological Complications, Preservatives, Xenobiotics
Ademiluyi, A. O., Oyeniran, O. H. & Oboh, G. (2020). Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). Journal of Food Biochemistry, 44, e13451.
Al Suhaibani, A., Ben Bacha, A., Alonazi, M., Bhat, R. S. & El‐Ansary, A. (2021). Testing the combined effects of probiotics and prebiotics against neurotoxic effects of propionic acid orally administered to rat pups. Food Science & Nutrition, 9, 4440-4451.
Albasher, G., Maashi, N., Alfarraj, S., Almeer, R., Albrahim, T., Alotibi, F., Bin-Jumah, M. & Mahmoud, A. M. (2020). Perinatal exposure to tartrazine triggers oxidative stress and neurobehavioral alterations in mice offspring. Antioxidants, 9, 53.
Aleksandra, F. & Alberto, M. (2015). Gender and age related modulation of xenoestrogen-induced tumorigenesis. Open Biotechnology Journal, 9.
Alexeeff, G. V., Broadwin, R., Liaw, J. & Dawson, S. V. (2002). Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures. Regulatory Toxicology and Pharmacology, 36, 96-105.
Alhusaini, A., Hasan, I. H., Alrumayyan, B., Alesikri, M., Alanazi, K., Almasoud, R. & Almarshad, S. (2020). Neuroprotective efficacy of nano‐CoQ against propionic acid toxicity in rats: Role of BDNF and CREB protein expressions. Journal of biochemical and molecular toxicology, 34, e22449.
Asghari, A., Hosseini, M., Khordad, E., Alipour, F., Marefati, N. & Bideskan, A. E. (2019). Hippocampal apoptosis of the neonates born from TiO2 nanoparticles-exposed rats is mediated by inducible nitric oxide synthase. Toxin Reviews.
Azeez, O. H., Alkass, S. Y. & Persike, D. S. (2019). Long-term saccharin consumption and increased risk of obesity, diabetes, hepatic dysfunction, and renal impairment in rats. Medicina, 55, 681.
Báez, D. F., Gallardo-Toledo, E., Oyarzún, M. P., Araya, E. & Kogan, M. J. (2021). The influence of size and chemical composition of silver and gold nanoparticles on in vivo toxicity with potential applications to central nervous system diseases. International Journal of Nanomedicine, 2187-2201.
Ben Seghir, B., Kouadri, I., Messaoudi, M., Rebiai, A., Zeghoud, S., Hemmami, H. & Ben Amor, I.( 2023). Food chain contamination and impact of xenobiotics on human health. Xenobiotics in Urban Ecosystems: Sources, Distribution and Health Impacts. Springer.
Berdanier, C. D., Dwyer, J. T. & Feldman, E. B. (2007). Handbook of Nutrition and Food, CRC press.
Blaauboer, B. J. (2002). The applicability of in vitro-derived data in hazard identification and characterisation of chemicals. Environmental Toxicology and Pharmacology, 11, 213-225.
Bouftira, I. (2023). Natural Butylated Hydroxytoluene (BHT): A Review. Quantum Journal Of Medical And Health Sciences, 2, 1-13.
Bozzatello, P., Brignolo, E., De Grandi, E. & Bellino, S. (). Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. Journal of clinical medicine, 5, 67.
Bren, L. 2007. Bacteria-eating virus approved as food additive. FDA consumer, 41, 20-22.
Brown, A. C. 2018. Understanding Food: Principles and Peparation, Cengage learning.
Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V. F. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17, 1212.
Ceyhan, B. M., Gultekin, F., Doguc, D. K. & Kulac, E. (2013). Effects of maternally exposed coloring food additives on receptor expressions related to learning and memory in rats. Food and chemical toxicology, 56, 145-148.
Choi, D. K., Koppula, S., Choi, M. & Suk, K. (2010). Recent developments in the inhibitors of neuroinflammation and neurodegeneration: inflammatory oxidative enzymes as a drug target. Expert Opinion on Therapeutic Patents, 20, 1531-1546.
Contreras-Rodriguez, O., Solanas, M. & Escorihuela, R. M. (2022). Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Reviews in Endocrine and Metabolic Disorders, 23, 697-717.
Counihan, C. & Van Esterik, P. (2012). Food and Culture: A reader, Routledge.
Cusick, S. E., Barks, A. & Georgieff, M. K. (2021). Nutrition and brain development. sensitive periods of brain development and preventive interventions. Springer.
Das, S. & Smid, S. D. (2019). Small molecule diketone flavorants diacetyl and 2, 3-pentanedione promote neurotoxicity but inhibit amyloid β aggregation. Toxicology Letters, 300, 67-72.
Das, T., Hazra, S., Sengupta, S., Hazra, P. & Chattopadhyay, D. (2021). Genotoxic effect of saccharin on allium cepa root tips. Biologia, 76, 3191-3199.
Delgado-Vargas, F. & Paredes-Lopez, O. 2002. Natural Colorants for Food and Nutraceutical Uses, CRC press.
Demir, Y., Demir, N., Nadaroglu, H. & Uçkaya, M. (2022). An alternative method to assessment on safety effectiveness of food additives. International Journal of Innovative Research and Reviews, 6, 109-112.
Denuzière, A. & Ghersi-Egea, J.-F. (2022). Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. NeuroToxicology, 91, 100-118.
Dey, S., Samadder, A. & Nandi, S. (2022). Exploring current role of nanotechnology used in food processing industry to control food additives and their biochemical mechanisms. Current Drug Targets, 23, 513-539.
Diers, L., Rydell, S. A., Watts, A. & Neumark-Sztainer, D. (2022). A yoga-based therapy program designed to improve body image among an outpatient eating disordered population: Program description and results from a mixed-methods pilot study. Yoga for Positive Embodiment in Eating Disorder Prevention and Treatment. Routledge.
Fellows, P. J. 2022. Food Processing Technology: Principles and Practice, Woodhead publishing.
Felter, S. P., Bhat, V. S., Botham, P. A., Bussard, D. A., Casey, W., Hayes, A. W., Hilton, G. M., Magurany, K. A., Sauer, U. G. & Ohanian, E. V. (2021). Assessing chemical carcinogenicity: Hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Critical Reviews in Toxicology, 51, 653-694.
Finn, J. & Lord, G. (2000). Neurotoxicity studies on sucralose and its hydrolysis products with special reference to histopathologic and ultrastructural changes. Food and Chemical Toxicology, 38, 7-17.
Gasmi, A., Nasreen, A., Menzel, A., Gasmi Benahmed, A., Pivina, L., Noor, S., Peana, M., Chirumbolo, S. & Bjørklund, G. (2022). Neurotransmitters regulation and food intake: The role of dietary sources in neurotransmission. Molecules, 28, 210.
Giordano, G. & Costa, L. G. (2012). Developmental neurotoxicity: some old and new issues. International Scholarly Research Notices, 2012.
Goyal, S., Gupta, M., Sharma, P. & Beniwal, V. 2023. Hypersensitivity associated with food additives. Microbes for Natural FoodAadditives. Springer.
Gupta, R. C., Pitt, J. & Zaja-Milatovic, S. (2020). Blood–brain barrier damage and dysfunction by chemical toxicity. Handbook of Toxicology of Chemical Warfare Agents. Elsevier.
Guth, S., Hüser, S., Roth, A., Degen, G., Diel, P., Edlund, K., Eisenbrand, G., Engel, K.-H., Epe, B. & Grune, T. (2020). Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology, 94, 1375-1415.
Hajihasani, M. M., Soheili, V., Zirak, M. R., Sahebkar, A. & Shakeri, A. (2020). Natural products as safeguards against monosodium glutamate-induced toxicity. Iranian Journal of Basic Medical Sciences, 23, 416.
Han, G., Li, X., Dong, G., Zhang, L., Gao, J., Li, M. & Du, L. (). Phenotyping Aquatic Neurotoxicity Induced by the Artificial Sweetener Saccharin at Sublethal Concentration Levels. Journal of Agricultural and Food Chemistry, 69, 2041-2050.
Hashem, M. M., Abd-Elhakim, Y. M., Abo-El-Sooud, K. & Eleiwa, M. M. (2019). Embryotoxic and teratogenic effects of tartrazine in rats. Toxicological Research, 35, 75-81.
Hasnan, N. Z. N., Basha, R. K., Amin, N. A. M., Ramli, S. H. M., Tang, J. Y. H. & Ab Aziz, N. (2022). Analysis of the most frequent nonconformance aspects related to Good Manufacturing Practices (GMP) among small and medium enterprises (SMEs) in the food industry and their main factors. Food Control, 141, 109205.
Hazzaa, S. M., Abdelaziz, S. A. M., Abd Eldaim, M. A., Abdel-Daim, M. M. & Elgarawany, G. E. (2020). Neuroprotective potential of allium sativum against monosodium glutamate-induced excitotoxicity: impact on short-term memory, gliosis, and oxidative stress. Nutrients, 12, 1028.
Hernando, M. D., Mezcua, M., Fernández-Alba, A. R. & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69, 334-342.
Hwang, S. R. & Kim, K. (2014). Nano-enabled delivery systems across the blood–brain barrier. Archives of Pharmacal Research, 37, 24-30.
Jiang, Y., Zhao, H., Xia, W., Li, Y., Liu, H., Hao, K., Chen, J., Sun, X., Liu, W. & Li, J. (2019). Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2 years. Environment International, 126, 413-421.
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K. & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97, 2499-2574.
Judson, R. S., Houck, K. A., Kavlock, R. J., Knudsen, T. B., Martin, M. T., Mortensen, H. M., Reif, D. M., Rotroff, D. M., Shah, I. & Richard, A. M. (2010). In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environmental Health Perspectives, 118, 485-492.
Karimi, Z., Ghaffari, M., Ezzati Nazhad Dolatabadi, J. & Dehghan, P. (2019). The protective effect of thymoquinone on tert-butylhydroquinone induced cytotoxicity in human umbilical vein endothelial cells. Toxicology Research, 8, 1050-1056.
Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon.
Kopalli, S. R., Noh, S.-J., Koppula, S. & Suh, Y.-H. (2013). Methylparaben protects 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and improved behavioral impairments in mouse model of Parkinson's disease. Neurotoxicology, 34, 25-32.
Kraemer, M. V. D. S., Fernandes, A. C., Chaddad, M. C. C., Uggioni, P. L., Rodrigues, V. M., Bernardo, G. L. & Proença, R. P. D. C. 2022. Food additives in childhood: a review on consumption and health consequences. Revista de Saúde Pública, 56, 32.
Kroes, R., Kleiner, J. & Renwick, A. (2005). The threshold of toxicological concern concept in risk assessment. Toxicological Sciences, 86, 226-230.
Kumar, P., Mehta, N., Abubakar, A. A., Verma, A. K., Kaka, U., Sharma, N., Sazili, A. Q., Pateiro, M., Kumar, M. & Lorenzo, J. M. (2023). Potential alternatives of animal proteins for sustainability in the food sector. Food Reviews International, 39, 5703-5728.
Lalani, A. R., Pouyani, N. R., Askari, A., Tavajohi, S., Akbari, S. & Jafarzadeh, E. (2023). Food Additives, Benefits, and Side Effects: A Review Article. Journal of Chemical Health Risks.
Laura, A., Arianna, G., Francesca, C., Carlo, C., Carla, M. & Giampaolo, R. (2019). Hypersensitivity reactions to food and drug additives: problem or myth? Acta Bio Medica: Atenei Parmensis, 90, 80.
Lebda, M. A., Sadek, K. M. & El-Sayed, Y. S. (2017). Aspartame and soft drink-mediated neurotoxicity in rats: implication of oxidative stress, apoptotic signaling pathways, electrolytes and hormonal levels. Metabolic brain disease, 32, 1639-1647.
Lemmens, G., Van Camp, A., Kourula, S., Vanuytsel, T. & Augustijns, P. (2021). Drug disposition in the lower gastrointestinal tract: targeting and monitoring. Pharmaceutics, 13, 161.
Levine, G. N., Cohen, B. E., Commodore-Mensah, Y., Fleury, J., Huffman, J. C., Khalid, U., Labarthe, D. R., Lavretsky, H., Michos, E. D. & Spatz, E. S. (2021). Psychological health, well-being, and the mind-heart-body connection: a scientific statement from the American Heart Association. Circulation, 143, e763-e783.
Lindeman, B., Johansson, Y., Andreassen, M., Husøy, T., Dirven, H., Hofer, T., Knutsen, H. K., Caspersen, I. H., Vejrup, K. & Paulsen, R. E. (2021). Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reproductive Toxicology, 101, 93-114.
Luo, L. (2021). Architectures of neuronal circuits. Science, 373, eabg7285.
Maghiari, A. L., Coricovac, D., Pinzaru, I. A., Macașoi, I. G., Marcovici, I., Simu, S., Navolan, D. & Dehelean, C. (2020). High concentrations of aspartame induce pro-angiogenic effects in ovo and cytotoxic effects in HT-29 human colorectal carcinoma cells. Nutrients, 12, 3600.
Mohamed, A. A.-R., Galal, A. A. & Elewa, Y. H. (2015). Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochemica, 117, 649-658.
Mohammadipour, A., Haghir, H. & Ebrahimzadeh Bideskan, A. (2020). A link between nanoparticles and Parkinson’s disease. Which nanoparticles are most harmful? Reviews on Environmental Health, 35, 545-556.
Morland, C., Frøland, A.-S., Pettersen, M. N., Storm-Mathisen, J., Gundersen, V., Rise, F. & Hassel, B. (2018). Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. Biochemical Journal, 475, 749-758.
Munro, I., Renwick, A. & Danielewska-Nikiel, B. (2008). The threshold of toxicological concern (TTC) in risk assessment. Toxicology Letters, 180, 151-156.
Mwale, M. M. (2023). Health risk of food additives: Recent developments and trends in the food sector. Health risks of food additives-recent developments and trends in food sector.
Norouzirad, R., González-Montaña, J.-R., Martínez-Pastor, F., Hosseini, H., Shahrouzian, A., Khabazkhoob, M., Malayeri, F. A., Bandani, H. M., Paknejad, M. & Foroughi-Nia, B. (2018). Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Science of the Total Environment, 635, 308-314.
Organization, W. H. (2002). The world health report 2002: reducing risks, promoting healthy life, World Health Organization.
Organization, W. H.(2004). Guidelines for drinking-water quality, World Health Organization.
Organization, W. H. 2022. Evaluation of certain contaminants in food: ninetieth report of the Joint FAO/WHO Expert Committee on Food Additives, World Health Organization.
Otsuki, T., Wilson, J. S. & Sewadeh, M.(2001). Saving two in a billion: quantifying the trade effect of European food safety standards on African exports. Food Policy, 26, 495-514.
Oummadi, A. (2023). Evaluation of the effects of inflammation and combined exposure to environmental toxicants during the perinatal period: a potential etiological factor of neurodegenerative pathologies? , Université d'Orléans; Macquarie University (Sydney, Australie).
Papadopoulos, M. C. & Verkman, A. S. (2007). Aquaporin-4 and brain edema. Pediatric Nephrology, 22, 778-784.
Pickering, D. & Williams, M. (2014). The use of non-nutritive sweeteners in establishing and maintaining a healthy weight.
Piwowarska, D. & Kiedrzyńska, E. (2022). Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology, 22, 337-354.
Popa-Wagner, A., Dumitrascu, D. I., Capitanescu, B., Petcu, E. B., Surugiu, R., Fang, W.-H. & Dumbrava, D.-A. (2020). Dietary habits, lifestyle factors and neurodegenerative diseases. Neural regeneration research, 15, 394.
Rambler, R. M., Rinehart, E., Boehmler, W., Gait, P., Moore, J., Schlenker, M. & Kashyap, R. (2022). A review of the association of blue food coloring with attention deficit hyperactivity disorder symptoms in children. Cureus, 14.
Rodero, A. B., De Souza Rodero, L. & Azoubel, R. 2009. Toxicity of sucralose in humans: A review. international journal of morphology, 27.
Rovina, K., Siddiquee, S. & Shaarani, S. M. (2017). A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical Reviews in Analytical Chemistry, 47, 309-324.
Ruczaj, A. & Brzóska, M. M. (2023). Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. Journal of Applied Toxicology, 43, 66-88.
Rycerz, K. & Jaworska-Adamu, J. E. (2013). Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathologica, 51, 10-17.
Rydström, C. (2012). Nanoparticles in food-with a focus on the toxicity of titanium dioxide.
Sambu, S., Hemaram, U., Murugan, R. & Alsofi, A. A. 2022. Toxicological and teratogenic effect of various food additives: an updated review. BioMed Research International, 2022.
Santosh, S. W. (2023). Focus on reproductive health and alterations in women. Environmental Contaminants and Endocrine Health. Elsevier.
Saravanan, D., Khatoon, S. & Sabarathinam, S. (2023). A narrative review on the impact of processed foods/junk foods/preserved foods: Why special attention is required to prevent metabolic syndrome? Obesity Medicine, 100507.
Schjenken, J. E., Green, E. S., Overduin, T. S., Mah, C. Y., Russell, D. L. & Robertson, S. A. (2021). Endocrine disruptor compounds—a cause of impaired immune tolerance driving inflammatory disorders of pregnancy? Frontiers in Endocrinology, 12, 607539.
Schupp, T. (2022). 15 Toxicology of inorganic compounds. From Magnetic to Bioactive Materials, 439.
SEN, M. 2021. Food chemistry: role of additives, preservatives, and adulteration. Food Chemistry: The role of additives, preservatives and adulteration, 1-42.
Sharma, R., Rahi, S. & Mehan, S. (2019). Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicology Reports, 6, 1164-1175.
Song, B., Liu, J., Feng, X., Wei, L. & Shao, L. (2015). A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Research Letters, 10, 1-17.
Strużyńska, L. (2017). The application, neurotoxicity, and related mechanisms of silver nanoparticles. Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier.
Thimraj, T. A., Sompa, S. I., Ganguly, K., Ernstgård, L., Johanson, G., Palmberg, L. & Upadhyay, S. (2019). Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicology in Vitro, 61, 104617.
Vilas-Boas, A. A., Pintado, M. & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10, 1564.
Vojdani, A. & Vojdani, E. (2021). The role of exposomes in the pathophysiology of autoimmune diseases I: toxic chemicals and food. Pathophysiology, 28, 513-543.
Wilson, K. (2023). Unprocessed: How the food we eat is fuelling our mental health crisis ‘this book will change lives’–tim spector, author of food for life, random house.
Wu, J., Wang, C., Sun, J. & Xue, Y. 2011. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS nano, 5, 4476-4489.
Wu, L., Xu, Y., Lv, X., Chang, X., Ma, X., Tian, X., Shi, X., Li, X. & Kong, X. (2021). Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). Ecotoxicology and Environmental Safety, 223, 112551.
Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M. & Margină, D. (2019). A review of the alleged health hazards of monosodium glutamate. Comprehensive Reviews in Food Science and Food Safety, 18, 1111-1134.
Zhang, Y., Bai, Y., Jia, J., Gao, N., Li, Y., Zhang, R., Jiang, G. & Yan, B. (2014). Perturbation of physiological systems by nanoparticles. Chemical Society Reviews, 43, 3762-3809.
Ziem's, D. G. Environmental control plan for chemically sensitive patients.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)