Assessing the air salinity on agro-physiological response of Brassica oleracea var. capitata and Brassica oleracea var. botrytis
Article Main
Abstract
Air salinity is one of the problems for horticulture production in coastal areas. Cabbage and Cauliflower are horticulture commodities that have the potential to develop in coastal areas. The present study aimed to examine the agro-physiological response of cabbage (Brassica oleracea var. capitata) and cauliflower (B. oleracea var. botrytis) to different concentrations of air salinity. This research was a factorial experiment on polybags arranged according to a completely randomized block design with two factors. The first factor was the crop type, namely cabbage (Grand 22) and cauliflower (Larissa F1). The second factor was the concentration of air salinity, namely 0 dS. m-1, 6 dS. m-1, 12 dS. m-1, and 18 dS. m-1. The agro-physiological changes studied were crop yield, leaf chlorophyll content, stomata density, and proline content. A stress tolerance index was measured to determine the level of crop resistance to air salinity stress. The results explained that air salinity was not able to affect crop growth and yield, but it enabled to affect crops physiologically. The highest decrease in leaf chlorophyll content was at 18 dS. m-1 of 29.16% in the vegetative stage and 37.88% in the generative stage. There was an increase in proline accumulation of leaf (1,320.63%) when the air salinity was increased (18 dS. m-1). However, the accumulation of cabbage proline was lower than that of cauliflower. Based on the stress tolerance index, cabbage is included in the category of tolerant, while cauliflower is in the category of moderate tolerance to air salinity.
Article Details
Article Details
Air salinity, Cabbage, Coastal area, Cauliflower, Stress tolerance index, vegetable
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., Suwarno, W. B. & Safitri, H. (2018). Determination of selection criteria for screening of rice genotypes for salinity tolerance. SABRAO J Breed Genet, 50(3), 279-294.
Asian Development Bank. (2015). Summary of Indonesia’s Agriculture, Natural Resources, and Environment Sector Assessment. Mandaluyong City, Philippines. https://www.adb.org/sites/default/files/publication/177036/ino-paper-08-2015.pdf.
Athulya, B. M., Priya, G., Rani, B., Aparna, B. & Nishan, M. A. (2023). Assessment of Soil Quality Index in the Southern Coastal Sandy Soils of Kerala, India. Int. J. Environ. Clim. Change, 13(8), 526-536. https://doi.org/10.9734/IJECC/2023/v13i81980.
Barus, W. A., Munar, A., Sofia, I. & Lubis, E. (2021). Contribution of Salicylic Acid to Salinity Stress Resistance in Plants. Jurnal Penelitian Bidang Ilmu Pertanian, 19(2), 9–19. [Indonesian].
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
Central Statistical Agency (2021). Production of Vegetable Crops 2021 in Indonesia. https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html.
Devi, N. D. & Arumugam, T. (2019). Salinity tolerance in vegetable crops: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 2717-2721.
Faozi, K., Yudono , P., Indradewa, D. , & Ma’as, A. (2021). The growth analysis of soybean cultivars on the application of banana pseudo-stem bokashi in Samas Coastal Land, Yogyakarta. Ilmu Pertanian (Agricultural Science), 6(1), 28-37. https://doi.org/10.22146/ipas.41531.
Ghosh, B., Mohamed, N. A. & Gantait, S. (2016). Response of rice under salinity stress: a review update. Rice Res, 4(2), 1-8. https://doi.org/10.4172/2375-4338.10 00167.
Ginting, E. S. B., Bangun, M. K., & Putri, L. A. P. (2013). Growth Response and Production of Hybrid and Non-Hybrid Corn (Zea mays L.) Varieties to the Application of Pospat and Bokashi Fertilizers. Jurnal Online Agroekoteknologi, 1(2), 67–73. [Indonesian].
Giuffrida, F., Carla, C., Angelo, M., & Cherubino, L. (2016). Effects of salt stress imposed during two growth stages on cauliflower production and quality. J. Sci. Food Agric., 97, 1552–1560. https://doi.org/10.1002/jsfa.7900.
Goharrizi, K. J., Baghizadeh, A., Afroushteh, M., Amirmahani, F. & Kermani, S. G. (2020). Effects of salinity stress on proline content and expression of Δ1-pyrroline-5-carboxylate synthase and vacuolar-type H+ subunit E genes in wheat. Plant Genetic Resources: Characterization and Utilization, 18(5), 334–342. https://doi.org/10.1017/s1479262120000350.
Hannachi, S., Steppe, K., Eloudi, M., Mechi, L., Bahrini, I. & Van Labeke, M. C. (2022). Salt Stress-Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant (‘Bonica’) and One Sensitive (‘Black Beauty’) Eggplant Cultivars (Solanum melongena L.). Plants, 11, 590. https://doi.org/10.3390/plants11050590.
Hayashi, K., Abdoulaye, T. & Wakatsuki, T. (2010). Evaluation of the utilization of heated sewage sludge for peri-urban horticulture production in the Sahel of West Africa. Agricultural Systems, 103, 36 – 44. https://doi.org/10.1016/j.agsy.2009.08.004.
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949.
Hnilickova, H., Kraus, K., Vachova, P. & Hnilicka, F. (2021). Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. Plants, 10, 845. https://doi.org/10.3390/plants10050845.
Hooshmandi, B. (2019). Evaluation of tolerance to drought stress in wheat genotypes. IDESIA (Chile), 37 (2), 37-43.
Imahori, Y. (2014). Role of ascorbate peroxidase in postharvest treatments of horticultural crops. Oxidative Damage to Plants: Antioxidant Networks and Signaling. Elsevier Inc., pp. 425–451. https://doi.org/10.1016/B978-0-12-799963-0.00014-9.
Jamil, M., Rehman, S., Lee, K. J., Kim, J. M., Kim, H. & Rha, E. S. (2007). Salinity Reduced Growth PS2 Photochemistry and Chlorophyll Content in Radish. Sci. Agric. (Piracicaba, Braz.), 64 (2), 111-118.
Liang, X., Zhang, L., Natarajan, S. K. & Becker, D. F. (2013). Proline Mechanisms of Stress Survival. Antioxid. Redox Signal, 19 (9), 998–1011. https://doi.org/10.1089/ars.2012.5074.
Machado, R. M. A. & Serralheiro, R. P. (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(30). https://doi.org/10.3390/horticulturae3020030.
Mazhar, S., Pellegrini, E., Contin, M., Bravo, C. & De Nobili, M. (2022). Impacts of salinization caused by sea level rise on the biological processes of coastal soils - A review. Front. Environ. Sci., 10, 909415. https://doi.org/10.3389/fenvs.2022.909415.
Munns, R., Schachtman, D. P. & Condon, A. G. (1995). The significance of a two-stage growth response to salinity in wheat and barley. Funct. Plant Biol., 22, 561–569.
Nasrudin and Kurniasih, B. (2021). The agro-physiological characteristics of three rice varieties affected by water depth in the coastal agricultural land of Yogyakarta, Indonesia. Biodiversitas, 22(9), 3656-3662. https://doi.org/10.13057/biodiv/d220907.
Nugroho, A. D. (2021). Does Covid-19 have effects on the Indonesian horticultural subsector?. Bulg. J. Agric. Sci., 27(5), 865–874.
Patni, B., Bhattacharyya, M. & Singh, S. K. (2020). Biochemical Mechanisms to Defend Salinity Stress in Cabbage Family Members. Adv Crop Sci Tech, 8, 433.
Putra, F. P., Yudono, P. & Waluyo, S. (2017). Growth and Yield of Upland Rice Under Intercropping System with Soybean in Sandy Coastal Area. Ilmu Pertanian (Agricultural Science), 2 (3), 130-136. https://doi.org/10.22146/ipas.25215.
Radanielson, A. M., Angeles, O., Li, T., Ismail, A. M., & Gaydon, D. S. (2017). Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Res, 220, 46-56. https://doi.org/10.1016/j.fcr.2017.05.001.
Ruel, T., Quisumbinga, A. R. & Balagamwala, M. (2018). Nutrition-sensitive agriculture: What have we learned so far? Global Food Security, 17, 128–153. https://doi.org/10.1016/j.gfs.2018.01.002.
Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S. & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Hort., 240, 196–204.
Sanoubar, R., Cellini, A., Veroni, A. M., Spinelli, F., Masia, A., Antisari, L. V., Orsini, F. & Gianquinto, G. (2015). Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. J Sci Food Agric, 96, 319–330. http://dx.doi.org/10.1002/jsfa.7097.
Saparso, Subiyanti-Harsono & Tohari. (2003). Development of Cabbage on Coastal Sand Land: Plant Growth on Various Combinations of Mulch and Methods of Nitrogen Fertilization. Agrin., 7(2), 60-73 [Indonesian].
Servina, Y. (2019). Climate Change Impacts and Adaptation Strategies for Fruit and Vegetable Plants in the Tropics. Jurnal Penelitian dan Pengembangan Pertanian. 38(2): 65–76 [Indonesian].
Saparso, Tohari, Shiddieq, D. & Setiadi B. (2009). Environmental determinants of cabbage production in coastal sandy soils. J. Hort., 19, 301-312 [Indonesian].
Sharma, J. K., Sihmar, M., Santal, A. R. & Singh N. P., (2021). Physiological and biochemical responses of seedlings of six contrasting barley (Hordeum vulgare L.) cultivars grown under salt-stressed conditions. Journal of Applied and Natural Science, 13(3), 1020 -1031. https://doi.org/10.31018/jans.v13i3.2863.
Shin, Y. K. S., Bhandari, S. R., Jo, J. S., Song, J. W., Cho, M. C., Yang, E. Y., & Lee, J. G. (2020). Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy, 10, 1627; http://dx.doi.org/10.3390/agronomy10111627.
Smirnoff, N. (1996). Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669.
Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M. & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Stageolus vulgaris L. South African Journal of Botany, 105, 306-312. http://dx.doi.org/10.1016/j.sajb.2016.03.011.
Thapa, B., Pandey, P., Paudel, S., Dahal, K. C., Khanal, A. & Shrestha, A. (2019). Effect of Seedling Density on Morphological Attributes of Cabbage, Cauliflower and Broccoli under Protected Condition. Global Journal of Science Frontier Research: D Agriculture and Veterinary, 19(3), 1-11.
Ukaegbu, E. P. & Nnawuihe, C. O. (2020). Assessing landuse effect on soil properties in the Coastal plains sand, Imo State, Nigeria. Afr. J. Agric. Res., 16(6), 850-859. http://dx.doi.org/10.5897/AJAR2018.13809.
Xian, X., Pang, M., Zhang, J., Zhu, M., Kong, F., & Xi, M. (2019). Assessing the effect of potential water and salt intrusion on coastal wetland soil quality: simulation study. J. Soils Sediments, 19, 2251–2264. https://doi.org/10.1007/s11368-018-02225-y.
Zaghdoud, C., Alcaraz-López, C., Mota-Cadenas, C., Martínez-Ballesta, M. C., Moreno, D. A., Ferchichi, A. & Carvajal, M. (2012). Differential responses of two broccoli (Brassica oleracea L. var italica) cultivars to salinity and nutritional quality improvement. S World J, 291435.
Zörb, C., Geilfus, C. M., & Dietz, K. J. (2018). Salinity and crop yield. Plant Biol., 21, 31–38.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)