Influence of GA3 (gibberellic acid) and Ca(calcium) on root trait variation and osmotic potential of linseed (Linum usitatissimum L.) under chloride-dominated salinity
Article Main
Abstract
Linseed (Linum usitatissimum) is a versatile crop cultivated for its seeds, which are valuable source of ω-3 fatty acids. It adversely affected by soil salinity, as high salt levels can hinder their growth and reduce yields. To assess the potential for mitigating the adverse effects of high salinity concentrations, enhancing the resilience of three genotypes (Shekhar, Sheela, and Kartika) of linseed plants, this research aimed to find out the impact of Gibberellic acid (GA3) and Calcium (Ca) on various aspects of root morphology, osmotic potential of linseed, under varying levels of Cl- dominated salinity. The study employed three salinity levels (0, 5, and 10 dSm-1) and exogenous application of 10−6 M GA3 and/or 10 mg CaCl2 kg-1 in potted plants.The findings indicated that increasing salinity stress significantly (p≤0.05) affected root parameters, including total surface area(43.45%), average diameter(42.06%), total projected area(44.45%), length per volume (66.23%), root length, total root volume (73.23%), tips, forks,fine roots, and osmotic potential(66.67%). Correlations among linseed genotypes were observed between various root morphology and osmotic potential parameters. The application of GA3 and Ca effectively ameliorated the impact of salinity stress at its highest level (10 dSm-1), resulting in increased root parameters while decreasing the osmotic potential (Ψs). Both GA3 and Ca treatments significantly influenced root architecture and maintained optimal osmotic potential. The chloride-dominated salinity exerted inhibitory effects on all three genotypes’ (Shekhar, Sheela, and Kartika) root growth parameters while applying GA3 and Ca successfully mitigated these effects, enhancing root growth.
Article Details
Article Details
Calcium, Gibberellic acid, Root architecture, Root length, Salinity
Bharath, P., Gahir, S. & Raghavendra, A.S. (2021). Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Frontiers of plant science 12, 324. https://doi.org/10.3389/fpls.2021.615114.
Bodros, E., Pillin, I., Montrley, N. & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications. Composites Science and Technology 67, 462-470. https://doi.org/10.1016/j.compscitech.2006.08.024.
Borsani, O., Valpuesta, V. & Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology 126, 1024–1030. https://doi.org/10.1104/pp.126.3.1024.
Chemikosova, S.B., Pavlencheva, N.V., Guryanov, O.P. & Gorshkova, T.A. (2006).The effect of soil drought on the phloem fiber development in long-fiber flax. Russian Journal of Plant Physiology 53, 656-662. https://doi.org/10.1134/S1021443706050098.
Chen, B., Xiao, X., Zhu, Y.G., Smith, F.A., Miao Xie,Z. & Smith, S.E. (2007).The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of Total. Environment 379, 226–234. https://doi.org/10.1016/j.scitotenv.2006.07.038.
Chinnusamy, V., Jagendorf, A. & Zhu, J.K. (2005).Understanding and improving salt tolerance in plants. Crop Science 45, 437–448. https://doi.org/10.2135/cropsci2005.0437.
Cuin, T.A., Tian, Y., Betts, S.A., Chalmandrier, R. & Shabala, S. (2009). Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Functional Plant Biology 36, 1110–1119. https://doi.org/10.1071/FP09051.
Deyholos, M.K. (2006). Bast fiber of flax (Linum usitatissimum L.): biological foundations of its ancient and modern uses. Israel Journal of Plant Sciences 54, 273-280. https://doi.org/10.1560/IJPS_54_4_273.
FAO (2021) FAO Statistical Year book. Food and Agriculture Organization of the United Nations, Rome.
Foster, R., Williamson, C.S. & Lunn, J. (2009). Culinary oils and their health effects.Nutrition Bulletin 34, 4-47. https://doi.org/10.1111/j.1467-3010.2008.01738.x.
Galvan-Ampudia, C.S. & Testerink, C. (2011). Salt stress signals shape the plant root. Current opinion in plant biology 14(3), 296-302. https://doi.org/10.1016/j.pbi.2011.03.019.
Gowda, V.R.P., Henry, A., Yamauchi, A., Shashidhar, HE. & Serraj, R. (2011).Root biology and genetic improvement for drought avoidance in rice. Field crops research 122(1),1–13. https://doi.org/10.1016/j.fcr.2011.03.001.
Guo, Q., Love, J., Roche, J., Song, J.C.,Turnbull, M.H. & Jameson, P. E. (2017). A Root Nav analysis of morphological changes in Brassica napus L. roots in response to different nitrogen forms. Plant Growth Regulation 83, 83–92. https://doi.org/10.1007/s10725-017-0285-0.
Hajlaoui, H., Ayeb, N., El Garrec, JP. & Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products 31,122–130. https://doi.org/10.1016/j.indcrop.2009.09.007.
Hassania, A., Azapagica, A., & Shokrib, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. PNAS 1-11, 33017–33027. https://doi.org/10.1073/pnas.2013771117.
Huang, L., Chen, D., Zhang, H., Song, Y., Chen, H. & Tang, M. (2019). Funneliformis mosseae enhances root development and pb phytostabilization in Robinia pseudoacacia in Pb-contaminated soil. Frontiers in Microbiology 10, 2591. https://doi.org/10.3389/fmicb.2019.02591.
Huis, R., Hawkins, S., & Neutelings, G. R. (2010).Seeselaerchc atrtiioclen of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC. Plant Biology 10, 71-78. https://doi.org/10.1186/1471-2229-10-71.
Iqbal, M., Ashraf, M., Jamil, A. & Rehman, S. (2006). Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress. Journal of Integrative Plant Biology 48, 181–189. https://doi.org/10.1111/j.1744-7909.2006.00181.x.
Jia, X.M., Zhu, Y.F., Zhang, R., Zhu, Z.L., Zhao, T., Cheng, L., Gao, L.Y., Liu, B., Zhang X.Y. & Wang Y.X. (2020). Ionomic and metabolomic analyses reveal the resistance response mechanism to Saline–Alkali stress in Malus halliana seedlings. Plant Physiology and Biochemistry 147, 77–90. https://doi.org/10.1016/j.plaphy.2019.12.001.
Julkowska, M., Koevoets, I., Mol, S., Hoefsloot, H., Feron, R., Tester, M., Keurentjes, J., Korte, A., Haring, M. & de Boer, G. (2017). Genetic Components of Root Architecture Remodeling in Response to Salt Stress. Plant Cell 29, 3198–3213. https://doi.org/10.1105/tpc.16.00680.
Kim, Y., Kim, S. & Shim, I.S. (2017). Exogenous salicylic acid alleviates salt stress damage in cucumber under moderate nitrogen conditions by controlling endogenous salicylic acid levels. Horticulture, Environment, and Biotechnology 58, 247–253. https://doi.org/10.1007/s13580-017-0111-7.
Korver, R.A., Van den Berg, T., Meyer, A.J., Galvan-Ampudia, C.S., Ten Tusscher, K.H.W.J. & Testerink, C.(2020). Halotropism Requires Phospholipase D Zeta 1-Mediated Modulation of Cellular Polarity of Auxin Transport Carriers. Plant Cell Environment 43,143–158. https://doi.org/10.1111/pce.13646.
Li, P., Yang, X., Wang, H., Pan, T., Wang, Y., Xu, Y., Xu, C. & Yang, Z. (2021).Genetic Control of Root Plasticity in Response to Salt Stress in Maize. Theoretical and Applied Genetics 134, 1475–1492. https://doi.org/10.1007/s00122-021-03784-4.
Liu, Q.Y., Guo, G.S., Qiu, Z.F., Li, X.D., Zeng, B.S. & Fan, C.J. (2018). Exogenous GA3 application altered morphology, anatomic and transcriptional regulatory networks of hormones in Eucalyptus grandis. Protoplasma 255,1107–1119. https://doi.org/10.1007/s00709-018-1218-0.
Lu, Z., Zhang, Z., Su, Y., Liu, C. & Shi, G. (2013). Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety 91, 147–155. https://doi.org/10.1016/j.ecoenv.2013.01.017.
Maeda, Y., Yoshiba, M. & Tadano, T. (2005). Comparison of Ca Effect on the Salt Tolerance of Suspension Cells and Intact Plants of Tobacco (Nicotiana tabacum L., cv. Bright Yellow‐2). Soil Science & Plant Nutrition 51(4), 485-490. https://doi.org/10.1111/j.1747-0765.2005.tb00056.x
Mahajan, S., Pandey, G.K. & Tuteja, N. (2008). Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Archives of biochemistry and biophysics 471(2), 146-158. https://doi.org/10.1016/j.abb.2008.01.010.
McKenzie, R.R. & Deyholos, M.K. (2011). Effects of plant growth regulator treatments on stem vascular tissue development in linseed (Linum usitatissimum L.). Industrial Crops and Products 34, 1119-1127. https://doi.org/10.1016/j.indcrop.2011.03.028.
Meena, H.N., Meena, M. & Yadav, R.S. (2016). Comparative performance of seed types on yield potential of peanut (Arachis hypogaea L.) under saline irrigation. Field crops research 196, 305–310. https://doi.org/10.1016/j.fcr.2016.06.006.
Mishra, J., Rachna, S. & Arora, N.K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology 8, 1707. https://doi.org/10.3389/fmicb.2017.01706.
Munzuroglu, O. & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and cucumis sativus. Archives of Environmental Contamination and Toxicology 43, 203–213. https://doi.org/10.1007/s00244-002-1116-4.
Nam, M.H., Huh, S.M., Kim, K.M., Park, W.J., Seo, J.B., Cho, K., Kim, D.Y., Kim, B.G. & Yoon, I.S. (2012). Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Science 10, 25. https://doi.org/10.1186/1477-5956-10-25.
Neves, G.Y.S., Marchiosi, R., Ferrarese, M.L.L., Siqueira-Soares, R.C., Ferrarese-Filho, O. (2010). Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science 196(6), 467–473. https://doi.org/10.1111/j.1439-037X.2010.00432.x.
Osmont, K.S., Sibout, R., Hardtke, C.S. (2007). Hidden branches: developments in root system architecture. Annual review of plant biology 58, 93–113. https://doi.org/10.1146/annurev.arplant.58.032806.104006.
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. & Huang, Y. (2009). Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Canadian journal of microbiology 55, 879–886. https://doi.org/10.1139/W09-031.
Smith, G.S., Johnston, C.M. & Cornforth, I.S. (1983). Comparison of Nutrient Solutions for Growth of Plants in Sand Culture. New Phytologist 94, 537-548. https://doi.org/10.1111/j.1469-8137.1983.tb04863.x.
Song, W.Y., Zhang, Z.B., Shao, H.B., Guo, X.L., Cao, H.X., Zhao, H.B., Fu, Z.Y. & Hu, X.J. (2008). Relationship between calcium decoding elements and plant abiotic-stress resistance. International Journal of Biological Sciences 4(2), 116-125. http://dx.doi.org/10.7150/ijbs.4.116.
Spagnoletti, F. & Lavado, R. (2015). The arbuscular mycorrhiza Rhizophagus intraradicesreduces the negative effects of arsenic on soybean plants. Agronomy 5,188–199. https://doi.org/10.3390/agronomy5020188.
Srivastava, S., Srivastava, A. K., Suprasanna, P. & D’Souza, S. F. (2009). Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. Journal of Experimental Botany 60, 3419–3431. https://doi.org/10.1093/jxb/erp181.
Sun, J., Wang, M.J., Ding, M.Q., Deng, S.R., Liu, M.Q., Lu, C.F., Zhou, X.Y., Shen, X., Zheng, X.J., Zhang, Z.K. & Song, J. (2010). H2O2 and cytosolic Ca2+ signals triggered by the PM H+‐coupled transport system mediate K+/Na+ homeostasis in NaCl‐stressed Populus euphratica cells. Plant, Cell & Environment 33(6), 943-958. https://doi.org/10.1111/j.1365-3040.2010.02118.x.
Vaisey-Genser, M., & Morris, D. H. (2003). History of the cultivation and uses of flaxseed. In: Muir, A., Westcott, N.D. (Eds.), Flax: The Genus Linum. Taylor and Francis, New York.
Wang, S.L., Zhao, Z.Y., Ge, S.Q., Peng, B., Zhang, K. & Hu, M.F. (2021). Root morphology and rhizosphere characteristics are related to salt tolerance of Suaeda salsa and Beta vulgaris L..Frontiers of plant science 12, 677767. https://doi.org/10.3389/fpls.2021.677767.
Werner, T., Motyka, V., Strnad, M. & Schmülling, T. (2001). Regulation of plant growth by cytokinin.The Proceedings of the National Academy of Sciences 98,10487–10492. https://doi.org/10.1073/pnas.171304098.
Wu, Q.S., Zou, Y.N. (2009). Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37, 133–138.
Wu, L., Huang, Z., Li, X., Ma, L., Gu, Q. & Wu, H. (2018). Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in Microbiology 9, 847. https://doi.org/10.3389/fmicb.2018.00847.
Wu, Q. S., Zou, Y. N., He, X. H. & Luo, P. (2011). Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf. seedlings). Plant Growth Regulation 65, 273–278. https://doi.org/10.1007/s10725-011-9598-6.
Yang, C.W., Wang, P., Li, C.Y., Shi, D.C. & Wang, D.L. (2008). Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46(1), 107–114. https://doi.org/10.1007/s11099-008-0018-8.
Zhang, Y.M., Ma, H.L., Calderon-Urrea, A.,Tian, C.X., Bai, X.M. & Wei, J.M. (2016). Anatomical changes to protect organelle integrity account for tolerance to alkali and salt stresses in melilotus officinalis. Plant Soil 406(1–2), 327–340. https://doi.org/10.1007/s11104-016-2875-4.
Zhang, H., Liu, Z., Chen, H., & Tang, M. (2016). Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. Plos one 11(4), e0153378. https://doi.org/10.1371/journal.pone.0153378.
Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Current opinion in plant biology 6(5), 441-445. https://doi.org/10.1016/s1369-5266(03)00085-2.
Zohary, D. & Hopf, M. (2004). Domestication of plants in the old world third edition, Oxford: Oxford University Press.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)