##plugins.themes.bootstrap3.article.main##

P. Leema Rose V. Sarojini G. D Biji

Abstract

The increasing incidence of cancer cases and multi-drug-resistant bacteria, which are major threats to humankind, forces the research world to innovate new molecules to deal with them.  The main aim of the present work is to prepare silver nanoparticles using macroalgal polysaccharides and to study biological activities. The silver nanoparticles (NPs) were prepared using polysaccharides extracted from the marine macro alga Portieria hornemannii by stirring them with 1 mM silver nitrate after 24 h at 90 ºC. The formed silver nanoparticles were characterized using UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR) analysis, Transmission Electron Microscopy (TEM) analysis, selected-area electron diffraction (SAED), and Energy Dispersive X-ray (EDX) analysis. UV-visible spectrum analysis revealed a surface plasmon peak at 380 nm, showing the development of silver nanoparticles. The nanoparticle size varied between 40 and 50 nm and the functional group was analyzed using FT-IR spectrum. The broadband was observed at 3304 cm-1 (hydroxyl and amino group) and the narrow band was observed at 2907 cm-1 (C–H stretching vibration), 1657 cm-1 (stretching of carbonyl groups), and 1001 cm-1 (C–O stretching vibration). The crystalline nature of silver NPs was confirmed by SAED. EDX analysis reveals the purity and the chemical composition of silver NPs. Nanoparticles were highly effective against Proteus mirabilis (24 mm zone of inhibition) and Bacillus substilis (24 mm zone of inhibition). The anticancer activity of the silver nanoparticles tested against colorectal adenocarcinoma cell lines increased at increasing concentrations of nanoparticles.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Anticancer, Antibacterial, Green synthesis, Marine alga, Polysaccharides, Silver nanoparticles

References
Al-Dhabi, N. A., Ghilan, A. K. M., Arasu, M. V. &Duraipandiyan, V.(2018). Green biosynthesis of silver nanoparticles produced from marine Streptomyces sp. Al-Dhabi-89 and their potential applications against wound infection and drug resistant clinical pathogens. J. Photochem. Photobiol. B: Biol.189, 176-184.https://doi.org/10.1016/j.jphotobiol.2018.09.012.
Al-Dhabi, N. A.& Valan Arasu, M.(2018). Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials.8(7), 500.https://doi.org/10.33 90/nano8070500.
Alduraihem, N.S., Bhat, R.S., Al-Zahrani, S.A., Elnagar, D.M., Alobaid, H.M. & Daghestani, M.H.( 2023). Anticancer and antimicrobial activity of silver nanoparticles synthesized from pods of Acacia nilotica. Processes, 11(2), 301.https://doi.org/10.3390/pr11020301.
Álvarez-Viñas, M., González-Ballesteros, N., Torres, M.D., López-Hortas, L., Vanini, C., Domingo, G., Rodríguez-Argüelles, M.C. & Domínguez, H. (2022). Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. Int. J. Biol. Macromol. 206, 553-566.https://doi.org/10.1016/j.ijbiomac.2022.02.145.
Arasu, M. V., Arokiyaraj, S., Viayaraghavan, P., Kumar, T. S. J., Duraipandiyan, V.& Al-Dhabi, N. A.(2019). One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J. Photochem. Photobiol. B: Biol.190, 154-162.https://doi.org/10.1016/j.jphotobiol.201 8.11.020.
Arokiyaraj, S., Arasu, M. V., Vincent, S., Prakash, N. U., Choi, S. H., Oh, Y. K., et al.(2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. Int. J. Nanomed.9, 379.https://doi.org/10.2147/IJN.S5 3546.
Atif, M., Ilavenil, S., Devanesan, S., AlSalhi, M. S., Choi, K. C., Vijayaraghavan, P., et al. (2020). Essential oils of two medicinal plants and protective properties of jack fruits against the spoilage bacteria and fungi. Ind. Crops Prod.147, 112239.https://doi.org/10.1016/j.indcrop.2020.112239.
Ayesha, H., Sultana, V., Ara, J. &Ehteshamul-Haque, S. (2010). In vitro cytotoxicity of seaweeds from Karachi coast on brine shrimp. Pak. J. Bot. 42(5), 3555-3560.
Bhuyar, P., Rahim, M. H. A., Yusoff, M. M., Maniam, G. P.& Govindan, N. (2019). A selective microalgae strain for biodiesel production in relation to higher lipid profile. MaejoInt. J. Energy Environ. Commun.1(1), 8-14.https://doi.org/10.54279/mijeec.v1i1.244895 .
Bhuyar, P., Rahim, M. H., Sundararaju, S., Maniam, G. P.& Govindan, N. (2020). Antioxidant and antibacterial activity of red seaweed Kappaphycusalvarezii against pathogenic bacteria. Glob. J. Env. Sci. Manage.6(1), 47-58.
Bhuyar, P., Sundararaju, S., Rahim, M. H. A., Ramaraj, R., Maniam, G. P.& Govindan, N. (2021). Microalgae cultivation using palm oil mill effluent as growth medium for lipid production with the effect of CO2 supply and light intensity. Biomass Con. Biorefin.11, 1555-1563.https://doi.org/10.1007/s13399-019-00548-5.
Bhuyar, P., Yusoff, M. M., Rahim, M. H. A., Sundararaju, S., Maniam, G. P.& Govindan, N. (2021). Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. J. Microbiol. Biotechnol. Food Sci.9, 671-674.https://doi.org/10.15414/JMBFS.2020.9.4.671-674.
Bindhu, M. R., Umadevi, M., Esmail, G. A., Al-Dhabi, N. A. & Arasu, M. V.(2020). Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B: Biol.205, 111836.https://doi.org/10.1016/j.jphotobiol.2020.111836.
Chandraprabha, M. M., Seenivasan, R., Indu, H., & Geetha, S. (2012). Biochemical and Nanotechnological Studies in Selected Seaweeds of Chennai Coast. J. Appl. Pharmaceut. Sci.2(11), 100–107.
Elango, G., Roopan, S. M., Dhamodaran, K. I., Elumalai, K., Al-Dhabi, N. A. & Arasu, M.V.(2016). Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J. Photochem. Photobiol. B: Biol.162, 162-167.https://doi.org/10.1016/j.jphotobiol.20 16.06.045.
El-Rafie, H.M., El-Rafie, M. & Zahran, M.K. (2013). Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohy. Polymer. 96(2), 403-410. https://doi.org/10.1016/j.carbpol.2013.0 3.071.
Femi-Adepoju, A.G., Dada, A.O., Otun, K.O., Adepoju, A.O. &Fatoba, O.P. (2019). Green synthesis of silver nanoparticles using terrestrial fern (GleicheniaPectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon, 5(4), e01543. https://doi.org/10.1016/j.heliyon.2019.e01543.
George, A., Raj, D. M. A., Raj, A. D., Irudayaraj, A. A., Arumugam, J., Prabu, H. J., et al.(2020). Temperature effect on CuO nanoparticles: antimicrobial activity towards bacterial strains. Surfac. Interface. 21, 100761.https://doi.org/10.1016/j.surfin.2020.100761.
Hamouda, R.A., Hussein, M.H., Abo-Elmagd, R.A. &Bawazir, S.S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 9(1), 13071.https://doi.org/10.1038/s41598-019-49444-y.
Helan, V., Prince, J. J., Al-Dhabi, N. A., Arasu, M. V., Ayeshamariam, A., Madhumitha, G., et al. (2016). Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Result. Phy.6, 712-718.https://doi.org/10.1016/j.rinp.2016.10.005.
Malar, T. J., Antonyswamy, J., Vijayaraghavan, P., Kim, Y. O., Al-Ghamdi, A. A., &Elshikh, M.S.(2020). In-vitro phytochemical and pharmacological bio-efficacy studies on Azadirachta indica A. Juss and Melia azedarach Linn for anticancer activity. Saud. J. Biol. Sci.27(2), 682-688.
Mohanta, Y.K., Panda, S.K., Bastia, A.K. & Mohanta, T.K. (2017). Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front. Microbiol. 8, 626.https://doi.org/10.3389/fmicb.2017.00626.
Rajawat, S., Kurchania, R., Rajukumar, K., Pitale, S., Saha, S. & Qureshi, M.S. (2016). Study of anticancer properties of green silver nanoparticles against MCF-7 breast cancer cell lines. Green Process. Syn. 5(2), 173-181.https://doi.org/10.1515/gps-2015-0104.
Sahayaraj, K., Rajesh, S.& Rathi, J. M. (2012). Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig. J. Nanomater. Biostructures.7(4), 1557–1567.
Surendra, T. V., Roopan, S. M., Al-Dhabi, N. A., Arasu, M. V., Sarkar, G. &Suthindhiran, K.(2016). Vegetable peel waste for the production ofZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res. Lett. 11, 1-10.https://doi.org/10.1186/s11671-016-1750-9.
Surendra, T. V., Roopan, S. M., Arasu, M. V., Al-Dhabi, N. A. & Rayalu, G. M.(2016). RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J. Photochem. Photobiol. B: Biol.162, 550-557.https://doi.org/10.1016/j.jphotobiol.2016.07.032.
Valsalam, S., Agastian, P., Arasu, M. V., Al-Dhabi, N. A., Ghilan, A. K. M., Kaviyarasu, K., et al.(2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B: Biol.191, 65-74.https://doi.org/10.1016/j.jphotobiol.2018.12.010.
Venkatadri, B., Shanparvish, E., Rameshkumar, M. R., Arasu, M. V., Al-Dhabi, N. A., Ponnusamy, V. K. et al.(2020). Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anticancer potential on human colon carcinoma HT-29 cells. Saud. J. Biol. Sci.27(11), 2980-2986.https://doi.org/10.1016/j.sjbs.2020.09.021.
Vijayaraghavan, P., Rathi, M. A., Almaary, K. S., Alkhattaf, F. S., Elbadawi, Y. B.& Chang, S. W., et al. (2022). Preparation and antibacterial application of hydroxyapatite doped Silver nanoparticles derived from chicken bone. J. King Saud. Univ. Sci.34(2), 101749.https://doi.org/10.1016/j.jksus.2021.101749.
Vimala, R.T.V., Rajivgandhi, G., Sridharan, S., Jayapriya, M., Ramachandran, G., Kanisha, C.C., Manoharan, N. & Li, W.J. (2022). Biosynthesis and Characterization of Silver Nanoparticles from Actinobacteria. Method.Actinobacteriol.709-712.https://doi.org/10.1007/978-1-0716-1728-1_103.
Wan Mat Khalir, W.K.A., Shameli, K., Jazayeri, S.D., Othman, N.A., Che Jusoh, N.W. & Hassan, N.M.(2020). Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 8, 620.https://doi.org/10.3389/fchem.2020.00620.
Zhang, X., Esmail, G. A., Alzeer, A. F., Arasu, M. V., Vijayaraghavan, P., Choi, K.C. et al. (2020). Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens. Saud. J. Biol. Sci.27(12), 3505-3513.https://doi.org/10.1016/j.sjbs.2020.10.022.
Section
Research Articles

How to Cite

Antibacterial and anticancer activity of green synthesised silver nanoparticles using polysaccharides extracted from the marine alga Portieria hornemannii. (2024). Journal of Applied and Natural Science, 16(1), 69-76. https://doi.org/10.31018/jans.v16i1.5070