Ranjana Yadav


Nanoscience and nanotechnology offer a plethora of possibilities for improving the qualities of wood composites. The present study aimed to use nanotechnology to develop low formaldehyde emitting particle board as ecologically acceptable composites. Conventional urea Formaldehyde resins were prepared by the percentage of second urea at 10%. Nano-wollastonite, silica and montomorillonite with the size range of 25-100 nm were applied at 0.5-2.0% based on the weight of resin. The nano-reinforced resins were admixed with suitable hardener and the panels were made. Formaldehyde emission reduction in wood panel products is critical and it can be partially controlled by using resin modification. The effectiveness of nanoparticle addition to reducing formaldehyde emission from wood particle board was examined by the perforator method as per IS 13745 (1993). Physical and Mechanical properties were evaluated according to IS 3087 (2005). The result indicated  distinctly lower water absorption and thickness swelling of panels produced with  1.5 %, 1.5 %  and 2.0 % nano silica, nano montomorillinite and nano wollastonite respectively. The results showed that static bending of the produced composite varied from 21.07 to 28.86 N/mm2 of MOR and from 2246 - 3353 N/mm2 of MOE; while internal bond strength (IB) varied from 0.35 to 0.58 N/mm2. As per IS 3087 (2005) requirements, 1.5 % nano silica and montomorillonite and 2.0 % nano wollastonite mechanically modified urea formaldehyde based agro composites gave the best results for grade II particle boards. The study concluded that nanoparticle addition reduces the formaldehyde content in the panel without affecting the strength properties.


Download data is not yet available.




Nanoparticle, Particle board, Urea formaldehyde resin, Mechanical properties

Anonymous (2012). National Cancer Institute, Formaldehyde and cancer risk. http://www.cancer.gov/canertopics/factsheet/Risk/ formaldehyde.
Azambuja, R. R., Castro, V. G., Trianoski, R. & Iwakiri, S. (2018). Recycling wood waste from construction and demolition to produce particleboards. Maderas Cienc. Technol., 20, 681–690. http://dx.doi.org/10.4067/S0718-221X2018005041401.
Cademartori, P. H. G., Artner, M. A., De Freitas, R. A., Esteves Magalhães, W. L. (2019). Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Compos. Part B: Engg., 176, 107281-107290. https://doi.org/10.1016/j.compositesb.2019.107281.
Candan, Z. & Akbulut, T. (2012). Developing environmentally friendly wood composites panels by nanotechnology. Bioresources, 8 (3), 3590-3598. http://dx.doi.org /10.1537 6/biores.8.3.3590-3598
Candan, Z. & Akbulut, T. (2015). Physical and mechanical of nanoreinforced particle board composites. Maderas. Ciencia Y Technologia, 17 (2), 319-334.http://dx.doi.or g /10.4067/S0718-221X2015005000030.
Ciraci, S. (2005). Science and technology at one of a billionth of a meter. Science and Technology, Tubitak, Ankara, Turkey.
Danyliuk, N., Tomaszewska, J. & Tatarchuk, T. (2020) Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications. J. Mol. Liq., 309, 113077. https://doi.org/10.1016/j.arabjc.2021.10 32 94.
Dukarska, D. (2013). The effect of an addition of nano SiO2 to urea resin on the properties of boards manufactured from rape straw. Forestry and Wood Technology, 82, 242-245.
Esmailpour, A., Taghiyari, H. R., Majidi, R., Morrel, J. J. & Mohammad-Panah, B. (2021). Nano-wollastonite to improve fire retardancy in medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Wood Material Science & Engineering, 16, 161-165. https://doi.org/10.10 80/17480272.2019.1641838.
Esmailpour, A., Taghiyari, H. R., Ghorbanali, M. & Mantains, G. I. (2020). Improving fire retardancy of Medium density fibre board by nano wollastonite. Fire and materials, 1, 8. http://dx.doi.org /10.1002/fam.2855.
Farah, A. N. I., Zaidon, A., Anwar, U. M. K., Rabiatol-Adawiah, M. A. & Lee, S. H. (2021). Improved performance of wood polymer nanocomposite impregnated with metal oxide nanoparticle-reinforced phenol formaldehyde resin. J. Tropical Forest Sci., 33, 77-87.
Gallo, E., Schartel, B., Acierno, D., Cimino, F. & Russo, P. (2013). Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Composites Part B: Engineering, 44 (1), 112-119.http://dx.doi.org /10.1016/j.compositesb.2012.07.005.
Haghighi-Poshtiri, A., Taghiyari, H. R. & Karimi, A. N. (2013). The optimum level of nano-wollastonite consumption as fire retardant in poplar wood (populous nigra). Int. J. Nano dimension, 42 (2), 141-151. http://dx.doi.org /10.7 508/IJND.2013.02.007.
Hameed, M., Rönnols, E. & Bramryd, T. (2019). Particleboard based on wood waste material bonded by leftover cakes of rape oil. Part 1: The mechanical and physical properties of particleboard. Holztechnologie, 6, 31–39. http://dx.doi.org /10.3390/f11111166.
Hassani, V., Taghiyari, H. R., Schmidt, O., Maleki, S. & Papadopoulos, A. N. (2019). Mechanical and physical properties of Oriented Strand Lumber (OSL): The effect of fortification level of nanowollastonite on UF resin. Polymerss, 11, 1884. https://doi.org/10.3390/ polym11111884.
Hernández, D., Fernández-Puratich, H., Cataldo, F. & Gonzále, J. (2020) Particle boards made with Prunus avium fruit waste, Case Studies in Construction Materials 12, e0033. https://doi.org/10.1016/j.cscm.2020.e00336.
IS 13745 (1993) Method for determination of formaldehyde content in particle board by extraction method called perforator method.
Iždinský, J., Vidholdová, Z. & Reinprecht, L. (2020). Particleboards from Recycled Wood. Forests,, 11, 1166. https://doi.org/10.3390/ f11111166.
Jones, P., Wegner, T., Atella, R., Beecher, J., Caron, R., Catchmark, J., Koukoulas, A., Lancaster, P., Perine, L., Rodriguiz, A., Ragauskas, A. & Zhu, J. (2005). Nannotechnology for the forest product industry-Vision and technology roadmap, Report based on Nanotechnology for the forest products industry workshop, Landsdowne, Virginia, USA, October 17-19, 2005, TAPPI Press, Atlanta, GA, USA.
Karimi, A., Taghiyari, H. R., Fattahi, A., Karimi, S., Ebrahimi, A. H. & Tarmian, A. (2013). Effect of wollastonite nanofibers on biological durability of poplar wood (Populus Nigra) againt Trametes Versicolor. Bioresources, 8 (3), 4134-4140.
Kord, B., Farnaz, M., Laleh, A. N. A. (2021). Decreasing Formaldehyde Emission from Particleboard Panels Fabricated by Adding Newly Phenolic Compounds as a Scavenger to Urea Formaldehyde Resin. http://dx.doi.o rg /10.21203/rs.3.rs-560970/v1.
Lei, H., Du, G., Pizzi, A. & Celzard, A. (2008). Influence of nanoclay on urea formaldehyde and phenol formaldehyde resins for wood adhesives. Journal of Adhesion Science & Technology, 109, 2442-2451. http://dx.doi.org /10.1002/app.28359.
Li, D. (2012). Nanostructuring materials towards conventionally unachievable combination of desired properties. Journal of Nanomaterials & Molecular Nanotechnology, 1 (1), 3. http://dx.doi.org /10.4172/2324-8777.1000e102.
Lin, Q,, Yang, G., Liu, J. & Rao, J. (2006). Property of nano-SiO2/urea formaldehyde resin. Front. For. China 2,230–237.
Liu, K., Su, C., Ma, W., Li, H., Zeng, Z. & Li, L. (2020). Free formaldehyde reduction in urea-formaldehyde resin adhesive: Modifier addition effect and physicochemical property characterization. BioRes., 15, 2339- 2355.
Moubarik, A., Allai, A., Pizzi, A., Charrier, F. & Charrier, B. (2010). Preparation and mechanical characterization of particle board made from maritime pine and glued with bio adhesives based based on cornstarch and tannis. Maderas. Ciencia Y Technologia, 12 (3), 189-197. http://dx.doi.org/10.4067/S0718-221X2010000300004. 
Oktay, S., Nilgün, K. & Basak, B. (2021). Oxidized cornstarch – Urea wood adhesive for interior particleboard production. Int. J. Adhesion & Adhesives, 110, 102947. https://doi.org/10.1016/j.ijadhadh.2021.102947.
Poshitril, H. R. (2015). The optimum level of nano wollastonite consumption in particle board. J. Mechanical Engg. Research & Develop., 37 (1), 11-21. http://dx.doi.or g/10.7508/IJND.2013.02.007.
Razali, N. S., Hazan, N. A. M. & Noh, I. A. (2012). Manufacturing of particle board from oil palm frond, Final year project report, Diploma in wood industry, faculty of applied science- Universiti Tecknologi MARA.
Reinprecht, L., Iždinský, J. & Vidholdová, Z. (2018). Biological resistance and application properties of particleboards containing nano-zinc oxide. Adv. Mater. Sci. Eng., 2018, 1–8. http://dx.doi.org /10.1155/2018/2680121.
Roffael, E. (2006). Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz als Roh- und Werkstoff, 64, 144-149. https://doi.org/10.1007/s00107-005-0061-0.
Roughley, D. J. (2005). Nanotechnology: Implications for the wood product industry. Final Report, Forintek Canada Corporation, North Vancouver, Canada, 73.
Roumeli, E., Papadopoulou, E., Pavlidou, E., Vourlias, G., Bikiaris, D., Paraskevopoulos, K. M. & Chrissafis, K. (2012). Syntesis, Characterization and Thermal analysis of urea formaldehyde/ nanoSiO2 resins. Thermochimica Acta, 527, 33-39. http://dx.doi.org /10.1016/j.tca.201 1.10.007.
Salthammer, T., Mentese, S. & Marutzky, R. (2010). Formaldehyde in the door environment. Chemical Review, 110, 2536-2572. http://dx.doi.org/10.1021/cr800399g.
Solt, P., Johannes, K., Wolfgang, G. A., Wolfgang, K., Johann, M., Roland, M., Hendrikus, W. G. van Herwijnen. (2019). Technological performance of formaldehyde free adhesive alternatives for particle board industry. Int. J. Adhesions & Adhesives, 94,99-131. https://doi.org/10.101 6/j.ijadhadh.2019.04.007.
Song, J., Chen, S., Yi, X., Zhao, X., Zhang, J., Liu, X. and Liu, B. (2021). Preparation and Properties of the Urea-Formaldehyde Res-In/Reactive Halloysite Nanocomposites Adhesive with Low-Formaldehyde Emission and Good Water Resistance. Polymers, 13, 2224. https://doi.org/10.3390/polym13142224.
Taghiyari, H. R., Mohammad-Panah, B. & Morrell, J. J. (2016a). Effects of wollastonite on the properties of medium-density. fiberboard (MDF) made from wood fibers and camel-thorn. Maderas. Ciencia Y Technologia, 18 (1), 157-166. http://dx.doi.org/10.4067/S0718-221X201600500 0016.
Taghiyari, H. R., Majidi, R. &  Jahangiri, A. (2016b). Adsorption of nanowollastonite on cellulose surface: effects on physical and mechanical properties of medium-density fiberboard (MDF). CERNE, 22 (2), 215-222. http://dx.doi.org /10.1590/0104776020 162222146.
Taghiyari, H. R., Ghamsari, F. A. & Salimifard, E. (2018). Effects of adding nano-wollastonite, date palm prunings and two types of resins on the physical and mechanical properties of medium-density fibreboard (MDF) made from wood fibres. Bois et Forêts des Tropiques, 335, 49-57. http://dx.doi.org/10.19182/bft2018.335.a31517.
Taghiyari, H. R., Karimi, A. & Tahir, P. M. D. (2013). Nano-wollastonite in particleboard: Physical and mechanical properties.  BioResources, 8(4), 5721-5732.
Taghiyari, H. R. & Nouri, P. (2015). Effect of nano wollastonite on physical and mechanical properties of medium density fibre board. Maderas. Ciencia Y Technologia, 17 (4), 8. http://dx.doi.org/10.4067/S0718-221X201500500 0072. 
Taghiyari, H. R., Rangavar, H. & Nouri, P. (2013 a). Fire retarding properties of nano wollastonite in MDF. European Journal of Wood and Wood Products, 71 (5), 573-581. http://dx.doi.org/10.1007/s00107-013-0711-6.
Taghiyari, H. R., Mobini, K., Samodi, Y. S., Doosti, Z., Karime, F., Asghari, M., Jahangiri, A. & Nouri, P. (2013b). Effect of wollastonite nanofibers on the improvement of thermal conductivity coefficient of Medium-Density Fiberboard (MDF). Journal of Nano Materials & Molecular Technolgy, 2.1. http://dx.doi.org/10.4172/2324-8777.10 00106.
Taghiyari, H. R., Hosseini, S. B., Ghahri, S., Ghofrani, M. & Papadopoulos, A. N. (2020) Formaldehyde emission in micron-sized wollastonite-treated plywood bonded with soy flour and urea-formaldehyde resin. Appl. Sci., 10, 6709-6723. https://doi.org/10.3390/app10196709.
Valle Ana, C. M., Bruno, S. F., Glaucia, A. P., Danielle, G. & Cristiane I. de C. (2020). Physical and mechanical properties of particleboard from eucalyptus grandis produced by urea formaldehyde resin with sio2 nanoparticles. Engenharia Agrícola, Jaboticabal, 40, 289-293. http://dx.doi.or g/10.1590/1809-4430-Eng.Agric.v40n3p289-293/2020.
Waheed, G., Hussein, A., Shah, S. R. A. & Khan, A. (2020). Effect of Iron Oxide Nanoparticles on the Physical Properties of Medium Density Fiberboard. Polymers, 12, 2911.https://doi.org/10.3390/polym13030371.
Williamson, G. K. & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22-31. https://doi.org/10.1016/0001-6160(53)90006-6.
Citation Format
How to Cite
Yadav, R. . (2021). Development of low formaldehyde emitting particle board by nano particle reinforcement. Journal of Applied and Natural Science, 13(4), 1187–1197. Retrieved from https://journals.ansfoundation.org/index.php/jans/article/view/2959
More Citation Formats:
Research Articles