Article Main

B. Asan Mohamed P. Janaki

Abstract

Pesticides have become a basic necessity for yield development. This might be credited to the quickly expanding population, which has presented weight on the food creation industry.Fourier Transform Infra-red Spectroscopy utilizes sample with less course of action, less time consuming, simple, fast, non-destructive and environmental friendly infrared-based method. It makes use of Smart iTR window and pellets use on omnic transmission window. In FTIR the peaks formed for the representative sample are from 800 cm-1 to 4000 cm-1 of wavenumbers against the % transmittance. The FTIR spectra obtained for pesticide formulations were on par with the NIST (National Institute of Standards and Technology) spectra library. Comparing the commercial-grade spectra with the Spectrabase, NIST library and Bio-rad software showed the peak ranges for different functional groups of the compound and can be examined with KnowItAll software’s ProcessItIR and AnalyseItIR. We can obtain the active principle of the peak, peak intensities. This method can be viewed as genuine choices to long and tedious chromatographic strategies as a rule suggested for quality control of commercially accessible pesticide formulations and check for adultered formulations that harm agricultural produce.


 

Article Details

Article Details

Keywords

FT-IR, Functional groups, Pesticides, Quality control, Wave numbers

References
Armenta, S., Quintás, G., Garrigues, S., & de la Guardia, M. (2004). Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures. Analytica Chimica Acta, 524(1-2), 257-264. doi:https://doi.org/10.1016/j.aca.2004.02.063
Armenta, S., Quintás, G., Garrigues, S., & de la Guardia, M. (2005a). A validated and fast procedure for FTIR determination of Cypermethrin and Chlorpyrifos. Talanta, 67(3), 634-639. doi:https://doi.org/10.1016/j.talanta.20 05.03.008
Armenta, S., Quintás, G., Morales, A., Garrigues, S. & de la Guardia, M. (2005b). FTIR approaches for diuron determination in commercial pesticide formulations. Journal of Agricultural and Food Chemistry, 53(15), 5842-5847. doi:https://doi.org/10.1021/jf050268f
Armenta, S., Garrigues, S. & de la Guardia, M. (2007). Partial least squares-near infrared determination of pesticides in commercial formulations. Vibrational Spectroscopy, 44(2), 273-278. doi:https://doi.org/10.1016/j.vibsp ec.2006.12.005
Armenta, S., Quintas, G., Garrigues, S., & De la Guardia, M. (2005c). Mid-infrared and Raman spectrometry for quality control of pesticide formulations. TrAC Trends in Analytical Chemistry, 24(8), 772-781. doi:https://doi.org/10.1016/j.trac.2005.03.017
Esler, M. B., Griffith, D. W., Wilson, S. R., & Steele, L. P. (2000). Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air. Analytical Chemistry, 72(1), 206-215. doi:https://doi.org/10.1021/ac9905625
Fenik, J., Tankiewicz, M., & Biziuk, M. (2011). Properties and determination of pesticides in fruits and vegetables. TrAC Trends in Analytical Chemistry, 30(6), 814-826. doi:https://doi.org/10.1016/j.trac.2011.02.008
Lee, L. C., Liong, C.-Y., & Jemain, A. A. (2017). A contemporary review on Data Preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemometrics and Intelligent Laboratory Systems, 163, 64-75. doi:https://doi.org/10.1016/j.chemolab.2017.02.008
Moros, J., Armenta, S., Garrigues, S., &de la Guardia, M. (2006). Quality control of Metamitron in agrochemicals using Fourier transform infrared spectroscopy in the middle and near range. Analytica Chimica Acta, 565(2), 255-260. doi:https://doi.org/10.1016/j.aca.2006.02.026
Post, E., Rahner, S., Möhler, H. & Rager, A. (1995). Study of recyclable polymer automobile undercoatings containing PVC using TG/FTIR. Thermochimica acta, 263, 1-6. doi:https://doi.org/10.1016/0040-6031(94)02388-5
Qiu, K., Song, X., Lai, Y., Wu, L., Tang, G. & Min, S. (2013). Comparison of ATR/transmittance FTIR combined with Beer's law and PLS to determine fipronil in matrine formulation. Analytical Methods, 5(18), 4790-4797. doi:https://doi.org/10.1039/C3AY40406D
Quintás, G., Armenta, S., Garrigues, S. & Guardia, M. d. l. (2004a). Fourier transform infrared determination of imidacloprid in pesticide formulations. Journal of the Brazilian Chemical Society, 15(2), 307-312. doi:https://doi.org/10.1590/S0103-50532004000200023
Quintas, G., Armenta, S., Morales-Noe, A., Garrigues, S. & de la Guardia, M. (2003). Simultaneous determination of Folpet and Metalaxyl in pesticide formulations by flow injection Fourier transform infrared spectrometry. Analytica Chimica Acta, 480(1), 11-21. doi:https://doi.org/10.1 016/S0003-2670(02)01596-9
Quintás, G., Morales-Noe, A., Armenta, S., Garrigues, S. & de la Guardia, M. (2004b). Fourier transform infrared spectrometric determination of Malathion in pesticide formulations. Analytica Chimica Acta, 502(2), 213-220. doi:https://doi.org/10.1016/j.aca.2003.10.044
Segal-Rosenheimer, M. & Dubowski, Y. (2007). Heterogeneous ozonolysis of cypermethrin using real-time monitoring FTIR techniques. The Journal of Physical Chemistry C, 111(31), 11682-11691. doi:https://doi.org/10.1021/jp072937t
Van de Voort, F., Sedman, J., Yaylayan, V., Laurent, C. S. & Mucciardi, C. (2004). Quantitative determination of moisture in lubricants by Fourier transform infrared spectroscopy. Applied Spectroscopy, 58(2), 193-198. doi:https://doi.org/10.1366%2F000370204322842922
Yang, L., Zhang, X. & Jiang, L. (2019). Determination of organophosphorus pesticides in fortified tomatoes by fluorescence quenching of cadmium selenium–zinc sulfide quantum dots. Analytical Letters, 52(5), 729-744. doi:https://doi.org/10.1080/00032719.2018.1490311
Section
Research Articles

How to Cite

Determination of active ingredients in commercial insecticides using spectral characteristics of Fourier transform infrared spectroscopy (FTIR). (2021). Journal of Applied and Natural Science, 13(SI), 110-123. https://doi.org/10.31018/jans.v13iSI.2809