Article Main

Preeti Saini Madhurama Gangwar Anu Kalia Narinder Singh Deepti Narang

Abstract

Isolation of endophytic actinomycetes is an important step to screen antimicrobial compounds to curb the threat of drug-resistant strains of human pathogens. Out of the 50 endophytic actinomycetes obtained from surface sterilized root, stem and leaf tissues of Syzygium cumini, 50 isolates (30%) exhibited antimicrobial activity. Antistaphylococcal activity was displayed by most of the isolates, with maximum percent inhibition by J-10 (Mean of Inhibition Factor=12.12 mm2). A total of 8 isolates (4 each) were able to hydrolyse protein (proteinase activity) and solubilize chitin (chitinase activity). Results of thin layer chromatography confirm the production of chloramphenicol family |antibiotic by the isolate J-5. This is the first report providing an insight into untapped endophytic actinomycete milieu of Syzygium cumini yet to be explored which might be a promising source for novel antimicrobial agents.

Article Details

Article Details

Keywords

Antagonism, Chitinase, Protease, SEM, Syzygium cumini, TLC

References
Ashokvardhan, T., Rajithasri, A.B., Prathyusha, P. and Satyaprasad, K. (2014). Actinomycetes from Capsicum annum L. rhizosphere soil have the biocontrol potential against pathogenic fungi. Int. J. Curr. Micobiol. Appl. Sci., 3(4): 894-903.
Bozzola, J.J. and Russell, D.L. (1996). Electron Microscopy, Second Edition, pp 202-39.
Chu, W.H. (2007). Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. Biotechnol., 34: 241-245.
Coombs, J.T. and Franco, C.M.M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat root. Appl. Environ. Microbiol., 69: 5603-5608.
Fiske, M.J., Tobey-Fincher, K.L. and Fuchs, R.L. (1990). Cloning of two genes from Bacillus circulans WL-12 which encode1,3-glucanase activity. J. Gen. Microbiol., 136: 2377-2383.
Gangwar, M., Dogra, S., Gupta, U.P. and Kharwar, R.N. (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr. J. Microbiol. Res., 8: 184-191.
Gangwar, M., Kaur, N., Saini, P. and Kalia, A. (2015). The diversity, plant growth promoting and anti-microbial activities of endophytic actinomycetes isolated from Emblica officinalis Gaertn. Int. J. Adv. Res., 3(4): 1062-1071.
Gayathri, P. and Muralikrishnan, V. (2013). Isolation and characterization of Endophytic Actinomycetes from mangrove plant for antimicrobial activity. Int. J. Curr. Microbiol. Appl. Sci., 2(11): 78-89.
Green, F., Claussen, C.A. and Highley, T.L. (1989). Adaption of the Nelson Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal. Biochem., 182: 197-199.
Gupta, V.K., Kumar, D., Kumar, L., Nagar, S., Raina, C. and Parshad, R. (2012). Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archiv. Appl. Sci. Res., 4 (4):1763-1770.
Hayashi, L.D., Fukushima, D. and Mogi, K. (1967). Agr Biol Chem, Tokyo 31:1237-1241. Cited from Physiology and Parasitism. Edt. by G. P. Agarwal and K. S. Bilgrami. Today and tomorrow’s printers and publishers, New Delhi, India, pp. 194.
Inbar, J. and Chet, I. (1991). Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol. Biochem., 23: 973-978.
James, D. and Mathew, S. (2015). Antagonistic activity of endophytic microorganisms against bacterial wilt disease of tomato. Int. J. Curr. Adv. Res., 4(10): 399-404.
Kaur, H., Gangwar, M. and Kalia, A. (2015). Diversity of actinomycetes from fodder leguminous plants and their biocontrol potential. Int. J. Adv. Res., 3(8): 1141-1151.
Kumar, U., Singh, A. and SivaKumar, T. (2011). Isolation and screening of endophytic actinomycetes from different parts of Emblica officinalis. Ann. Biol. Res., 2(4): 423-434.
Langevelde, P., et al (1998). Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: Quantitative measurements and biological reactivities. Antimicrob. Agents Chemother., 42: 3073-3078.
Machavariani, N.G., Ivankova, T.D., Sineva, O.N. and Terekhova, L.P. (2014). Isolation of endophytic actinomycetes from medicinal plants of the Moscow Region, Russia. World Appl. Sci. J., 30(11): 1599-1604.
Ordentlich, A., Elad, Y. and Chet, I. (1988). The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathol., 78: 84-92.
Passari, A.K., Mishra, V.K., Saikia, R., Gupta, V.K. and Singh, B.P. (2015). Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol., 6: 273-285.
Phuakjaiphaeo, C. and Kunasakdakul, K. (2015). Isolation and screening for inhibitory activity on Alternaria brassicicola of endophytic actinomycetes from Centella asiatica (L.) Urban. Int. J. Agric. Technol., 11(4): 903-912.
Jain, P. and Sharma, P. (2015). Antagonistic activity of endophytic fungi isolated from Syzygium cumini (L.) Skeels. Int. J. Life. Sci. Res., 3(2): 59-63.
Yadav, M., Yadav, A., Kumar, S., Sharma, D. and Yadav, J. P. (2014). Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia jambolana Lam. Int. J. Pharm. Pharm. Sci., 6(5): 208-211.
Rachniyom, H., Matsumoto, A., Indananda, C., Duangmal, K., Takahashi, Y. and Thamchaipenet, A. (2015 a). Nonomuraea syzygii sp. nov., an endophytic actinomy-cete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int. J. Syst. Evol. Micro-biol., 65(4): 1234-1240.
Rachniyom, H., Matsumoto, A., Indananda, C., Duangmal, K., Takahashi, Y. and Thamchaipenet, A. (2015 b). Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int. J. Syst. Evol. Micro-biol., 65(6): 1946-1949.
Sabala, I., Jonsson, I.M., Tarkowski, A. and Bochtler, M. (2012). Anti-staphylococcal activities of lysostaphin and LytM catalytic domain. BMC Microbiol., 12: 97-107.
Sietsma, J.H. and Wessels, J.G.H. (1979). Cell wall assembly in fungal morphogenesis. NATO ASI Series., 53: 81-95.
Stone, J.K., Charles, W.B. and James, F.W. (2000). An overview of endophytic microbes: endophytism defined. “Microbial endophytes”, Marcel Dekker, New York.
Strobel, G., Daisy, B., Castillo, U. and Harper, J. (2004). Natural products from endophytic microorganisms. J. Nat. Prod., 67(2): 257-268.
Struelens, M.C. (2003). The problem of resistance. In: Finch RG (ed) Antibiotic and chemotherapy: anti-infective agents and their use in therapy, 8th Ed., Elsevier Ltd., Printed in Great Britain, pp. 28.
Subathra. D., Kumari, A. and Jain, N. (2012). Novel bioactive compounds from mangrove derived actinomycetes. Int. Res. J. Pharma., 3(9): 25-29.
Surette, M.A., Sturz, A.V., Lada, R.R. and Nowak, J. (2003). Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil., 253: 381-390.
Taechowisan, T., Peberdy, J.F. and Lumyong, S. (2003). Chitinase production by endophytic Streptomyces aureofaciens CMUAc130 and its antagonism against phytopathogenic fungi. Ann. Microbiol., 53: 447-461.
Tian, X.L., Cao, L.X., Tan, H.M., Han, W.Q., Chen, M., Liu, Y.H. and Zhou, S.N. (2007). Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb. Ecol., 53: 700-707.
van der Sand, S.T., Minotto, E., Milagre, L.P. and Oliveira, M.T. (2014). Enzyme characterization of endophytic actinobacteria isolated from tomato plants. J. Adv. Sci. Res., 5(2): 16-23.
Varghese, R., Jyothy, S. and Mohamed Hath, A.A. (2014). Diversity and antagonistic activity of actinomycete strains from myristica swamp soils against human pathogens. DOI: 10.2478/acm-2014-0002.
Verma, V.C., Gond, S.K., Kumar, A., Mishra, A., Kharwar, R.N. and Gange, A.C. (2009). Endophytic actinomycetes from Azadirachta indica A. Juss.: Isolation, diversity, and anti-microbial activity. Microb. Ecol., 57(4): 749-756.
Verwer, P.E., Kate, M.T., Falcone, F.H., Morroll, S., Verbrugh, H.A., Bakker-Woudenberg, I.A. and van de Sande, W.W. (2013). Evidence supporting a role for mammalian chitinases in efficacy of caspofungin against experimental aspergillosis in immunocompromised rats. PloS One., http://www.ncbi.nlm.nih.gov/pubmed/24155872 8(10):e75848.
Vijayan, V.M., Radhakrishnan, M. and Balagurunathan, R. (2014). Bioprospecting of endophytic actinomycetes for antiphytofungal activity. Int. J. ChemTech. Res., 6(5): 2689-2694.
Waldemar, V., Bernard, J., Paulette, C. and Simon, F. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev., 32: 259-286.
Section
Research Articles

How to Cite

Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. (2016). Journal of Applied and Natural Science, 8(1), 416-422. https://doi.org/10.31018/jans.v8i1.809