##plugins.themes.bootstrap3.article.main##

Vishwanath Prasad

Abstract

The present study indicated that the Increase in UV-B exposure ( 312.67 nm, 2.5 Wm-2) to Spirulina fusiformis, a highly protein-rich (60-71%) helically coiled, unicellular, polymorphous cyanobacterium not only bleached phycocyanin (PC) but also decreased its content Absorption spectra of UV-B treated culture showed significant decline in the absorbance at the peak 620nm indicating the presence of PC. The absorbance decreased by increasing UV-B exposure. One hour simultaneous UV-B+PAR (Photosynthetic Active Radiation) exposure protected 33 percent damage of phycocyanin.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

UV-B, PAR, Phycobiliprotein, Spirulina

References
Banerjee, M., Sinha, R.P. and Häder, D.P. (1998). Biochemical and spectroscopic changes in phycobiliproteins of the cyanobacterium , Aulosira fertilissima , induced by UV-B radiation. Acta Protozool., 37:145-148
Boussiba, S. and Richmond, E. (1979). Isolation and characterization of phycocyanins from the bluegreen alga Spirulina platensis. Arch Microbiol., 120:155-159
Brody, S.S. and Brody, M. (1961). A quantitative assay for the number of chromophores on a chromo protein its application to phycerythrin thin and phycocyanin. Biochim Biohys. Acta., 50:348-352
Cai, Y.A., Murphy, J.T., Wedemayer, G.J. and Glazer, A.N. (2001). Recombinant phycobiliproteins. Anal Biochem., 290:186-204.
Cen, C.P. and Bornman, J.F. (1990). The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Exp Bot. 410:1489-1495.
Häder, D.P., Kumar, H.D., Smith, R.C. and Worrest, R.C. (2003). Aquatic ecosystems. effects of solar ultraviolet radiation and interaction with other climatic change factors. Photochem. Photobiol. Sci., 2:39-50.
Hanson, V. 2003. Ozone Hole over Antarctica OzonAction Newsteller 45:9.
Jeeji Bai and Seshadri, C.V. (1980). On coiling and uncoiling of trichomes in the genus Spirulina. Archive fur hydrobiologie beihefte Ergebnisse de Limnologie. 62:32-47.
Karent, Z., Cleaver, J.E. and Mitchell, D.L. (1991). Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet – B radiation. J.Phycol., 21:326-341.
Kratz, W.A. and Myers, J. (1955). Nutrition and growth of several blue-green algae. Am. J. Bot., 42: 282-287.
Prasad, V., Kumar, A and Kumar, H.D. (2003). Failure of dark repairing on UV-B induced damage in Chlorella. Ecoprint., 10 (1): 47-52.
Prasad, V., Kumar, A. and Kumar, H.D. (2006). Impact of UVB (312nm) radiation on nitrate, ammonium and phosphate uptake in S. fusiformis. In : Glimpses of cyanobacteria (eds) R.K. Gupta Kumar, M. and Paliwal, G.S. Daya Pub. House, New Delhi, pp 201-212
Quesada, A. and Vincent, W.F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur. J. Phycol., 32:335-342.
Rajagopal, S., Mahanty, P. and Murthy, S.D.S. (1999). Protection of energy ransfer process in isolated phycobilisome by white light from ultraviolet B induced damage in the cyanobacterium Spirulina platensis. Photosynthetica., 36:617-620.
Rowland, F.S. (2006). Stratospheric ozone depletion. Phil. Trans. R. Soc. B., 61:769-790.
Sinha, R.P. and Häder, D.P. (1996a). Photobiology and ecophysiology of rice field cyanobacteria. Photochem. Photobiol., 64:887-896.
Sinha, R.P. and Häder, D.-P. (2003). Biochemistry of phycobilisome disassembly by ultraviolet –B radiation in cyanobacteria .Recent Res. Devel. Biochem., 4: 945-955.
Sinha, R.P., Lebert, M., Kumar, A., Kumar, H.D. and Häder, D. P. (1995). Disintegration of phycobilisomes in rice field cyanobacterium Nostoc sp. following UV radiation. Biochem. and Mol. Biol. International. 37 (4) : 697 - 706.
Sinha, R.P., Kumar, A., Tyagi, M.B., and Häder, D.-P. (2005). Ultraviolet-B induced destruction of phycobiliproteins in cyanobacteria. Physiol Mol. Biol. Plants. 11 (2): 313-319.
Tyagi, R., Kumar, A., Tyagi, M.B., Jha, P.N., Kumar, H.D., Sinha, R.P. and Häder, D.P. (2003). Protective role of certain chemicals against UV-B induced damage in the nitrogen fixing cyanobacterium Nostoc muscorum. J. Basic Microbiol., 43 (2): 137-147.
Warner, C.W. and Caldwell, M.M. (1983). Influence of photon flux density in the 400-700nm waveband on inhibition of photosynthesis by UV-B (280-320nm) irradiation in soybean leaves: separation of indirect and immediate effects. Photochem. Photobiol., 38:341-346.
Zarrouk, C. (1966). Contribution a l’etude de’ une Cyanophyceae. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (setch et Gardner) Geitler. Ph.D. Thesis. University of Paris, France.
Section
Research Articles

How to Cite

Biochemical and spectroscopic changes in phycobiliproteins of the protein-rich Cyanobacterium, Spirulina fusiformis induced by UV-B radiation. (2009). Journal of Applied and Natural Science, 1(2), 280-283. https://doi.org/10.31018/jans.v1i2.71