Metagenomic insights of antibiotic resistance genes in Laguna Lake, Phillipines through nanopore sequencing
Article Main
Abstract
Antimicrobial resistance genes (ARGs) in aquatic environments pose a significant threat to public health and ecological balance. This study investigates the diversity of ARGs in Laguna Lake, Philippines, using nanopore-based metagenomics and specialized bioinformatics tools. Water samples were collected in September 2023 and March 2024 from various locations within the lake. These samples underwent DNA extraction, library preparation, and sequencing with the Oxford Nanopore MinION device. Reads were processed to remove low-quality sequences and subjected to taxonomic and ARG classification using various bioinformatic tools. Taxonomic analysis revealed that Proteobacteria [September (46.87%) and March (42.02%)], Actinobacteria (17.18 to 24.44%), and Firmicutes (3.93 to 8.94%) were the dominant Phyla, showing seasonal variations in their relative abundances. ARG analysis revealed multiple antibiotic types and subtypes in the lake, with multidrug resistance genes most prevalent. Notable differences in ARG types and read counts were observed between the two sampling periods. The occurrence of these genes per phylum was also identified. The study provides insights into the impact of environmental factors, including temperature and human activities, on the microbial community and ARG dissemination within the lake, warranting further investigation. Lastly, these findings underscore the need for advanced genomic techniques and bioinformatic tools to understand and mitigate the spread of antimicrobial resistance in aquatic ecosystems.
Article Details
Article Details
Antimicrobial resistance genes (ARG), Laguna lake, MinION sequencing device, Nanopore
Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M. & others. (2016). The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research, 44(W1), W1. https://doi.org/10.1093/nar/gkw343
Alam, K., Mazumder, A., Sikdar, S., Zhao, Y.M., Hao, J., Song, C. & et al. (2022). Streptomyces: The biofactory of secondary metabolites. Frontiers in Microbiology, 13, Article 968053. https://doi.org/10.3389/fmicb.2022.968053
Ariza-Prota, M.A., Pando-Sandoval, A., Fole-Vázquez, D., García-Clemente, M., Budiño, T. & Casan, P. (2015). Community-acquired bacteremic Streptomyces atratus pneumonia in an immunocompetent adult: A case report. J. Med. Case Rep., 9(1), 262. https://doi.org/10.1186/s13256-015-0753-y
Ashton, P.M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S. et al. (2015). MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol., 33(3), 296–300. https://doi.org/10.1038/nbt.3103
Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D.G.J. (2014). Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol., 5, 648. https://doi.org/10.3389/fmicb.2014.00648
Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F. et al. (2015). Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol., 13(5), 310–317. https://doi.org/10.1038/nrmicro3439
Castanheira, M., Simner, P.J. & Bradford, P.A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist., 3(3), dlab092. https://doi.org/10.1093/jacamr/dlab092
Castro, A.E., Montecillo, A.D., Villanueva, R.M. & Obusan, M.C.M. (2024). Bacterial community profiles of select tributaries of Laguna Lake in the Philippines. Microbiol. Res. Announc., 13(5), e01161-23. https://doi.org/10.1128/mra.01161-23
Chen, S. (2023). Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. imeta, 2(2), e107. https://doi.org/10.1002/imt2.107
Cheng, H., Sun, Y., Yang, Q., Deng, M., Yu, Z. & Liu, L. et al. (2022). An ultra-sensitive bacterial pathogen and antimicrobial resistance diagnosis workflow using Oxford nanopore adaptive sampling sequencing method. medRxiv. https://doi.org/10.1101/2022.07.03.22277093
De Coster, W. & Rademakers, R. (2023). NanoPack2: Population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5), btad311. https://doi.org/10.1093/bioinformatics/btad311
Dela Peña, L.B., Nacario, M.A.G., Bolo, N.R. & Rivera, W.L. (2022). Multiple antibiotic resistance in Escherichia coli isolates from fecal and water sources in Laguna Lake, Philippines. Water, 14(9), 1517. https://doi.org/10.3390/w14091517
Delahaye, C. & Nicolas, J. (2021). Sequencing DNA with nanopores: Troubles and biases. PLoS One, 16(10), e0257521. https://doi.org/10.1371/journal.pone.0257521
Doi, Y., Wachino, J. & Arakawa, Y. (2016). Aminoglycoside resistance. Infect. Dis. Clin. North Am., 30(2), 523–537. https://doi.org/10.1016/j.idc.2016.02.011
Ellington, M.J., Ekelund, O., Aarestrup, F.M., Canton, R., Doumith, M. & Giske, C. et al. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect., 23(1), 2–22. https://doi.org/10.1016/j.cmi.2016.11.012
Fernanda, P.A., Liu, S., Yuan, T., Ramalingam, B., Lu, J. & Sekar, R. (2022). Diversity and abundance of antibiotic resistance genes and their relationship with nutrients and land use of the inflow rivers of Taihu Lake. Front. Microbiol., 13, 1009297. https://doi.org/10.3389/fmicb.2022.1009297
Gupta, A., Kumar, S., Bajpai, Y., Chaturvedi, K., Johri, P. & Tiwari, R.K. et al. (2024). Pharmaceutically active micropollutants: Origin, hazards and removal. Front. Microbiol., 15, 1339469. https://doi.org/10.3389/fmicb.2024.1339469
He, Y.Q., Chen, R.W., Li, C., Shi, S.B., Cui, L.Q., Long, L.J. & others. (2020). Actinomarinicola tropica gen. nov. sp. nov., a new marine actinobacterium of the family Iamiaceae, isolated from South China Sea sediment environments. International Journal of Systematic and Evolutionary Microbiology, 70(6), Article 6. https://doi.org/10.1099/ijsem.0.004251
Hendriksen, R.S., Bortolaia, V., Tate, H., Tyson, G.H., Aarestrup, F.M. & McDermott, P.F. (2019). Using genomics to track global antimicrobial resistance. Frontiers in Public Health, 7, 242. https://doi.org/10.3389/fpubh.2019.00242
Huang, L., Wu, C., Gao, H., Xu, C., Dai, M., Huang, L. & others. (2022). Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview. Antibiotics (Basel), 11(4), Article 4. https://doi.org/10.3390/antibiotics11040520
Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H. & Visser, P.M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 8. https://doi.org/10.1038/s41579-018-0040-1
Khodabandeh, M., Mohammadi, M., Abdolsalehi, M.R., Alvandimanesh, A., Gholami, M., Bibalan, M.H. & others. (2019). Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Public Health and Research Perspectives, 10(1), 25–31. https://doi.org/10.24171/j.phrp.2019.10.1.06
Kiełbasa, S.M., Wan, R., Sato, K., Horton, P. & Frith, M.C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487–493. https://doi.org/10.1101/gr.113985.110
Kim, T.G., Yun, J., Hong, S.H. & Cho, K.S. (2014). Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Applied Microbiology and Biotechnology, 98(3), Article 3. https://doi.org/10.1007/s00253-013-5057-9
Lee, H.J., Jhang, S.T. & Jin, H.J. (2021). Potential target site for inhibitors in MLSB antibiotic resistance. Antibiotics, 10(3), Article 3. https://doi.org/10.3390/antibiotics10030264
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 18. https://doi.org/10.1093/bioinformatics/bty191
Lienen, T., Schnitt, A., Hammerl, J.A., Marino, S.F., Maurischat, S. & Tenhagen, B.A. (2021). Multidrug-resistant Staphylococcus cohnii and Staphylococcus urealyticus isolates from German dairy farms exhibit resistance to beta-lactam antibiotics and divergent penicillin-binding proteins. Scientific Reports, 11, 6075. https://doi.org/10.1038/s41598-021-85461-6
Looft, T., Johnson, T.A., Allen, H.K., Bayles, D.O., Alt, D.P., Stedtfeld, R.D. & others. (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America, 109(5), Article 5. https://doi.org/10.1073/pnas.1120238109
Lu, J., Breitwieser, F.P., Thielen, P. & Salzberg, S.L. (2017). Bracken: Estimating species abundance in metagenomics data. Peer J Computer Science, 3, e104. https://doi.org/10.7717/peerj-cs.104
Lv, Y., Zhou, Y., Chen, X., Zhao, T., Liu, T., He, X. & others. (2020). Study on indoor and outdoor permeability coefficients and bacterial components, sources of fine particles in severe cold region of China. Sustainable Cities and Society, 55, 102020. https://doi.org/10.1016/j.scs.2020.102020
Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
Martin, C., Stebbins, B., Ajmani, A. & others. (2021). Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and heavy metal resistome in wastewater. Ecotoxicology. https://doi.org/10.1007/s10646-020-02342-w
McArthur, A.G., Waglechner, N., Nizam, F., Yan, A., Azad, M.A., Baylay, A.J. & others. (2013). The comprehensive antibiotic resistance database. Antimicrobial Agents and Chemotherapy, 57(7), 3348–3357. https://doi.org/10.1128/AAC.00419-13
Miga, K.H., Koren, S., Rhie, A., Vollger, M.R., Gershman, A., Bzikadze, A. & others. (2020). Telomere-to-telomere assembly of a complete human X chromosome. Nature, 585(7823), 79–84. https://doi.org/10.1038/s41586-020-2547-7
Nesme, J. & Simonet, P. (2015). The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 17(4), 913–930. https://doi.org/10.1111/1462-2920.12631
Ntabugi, K.M., Manegabe, B.J., Dewar, J.B., Simbahan, J.F., Flavier, M.E. & Sekomo, C.B. (2021). Synergistic increase in antibiotic resistance with tolerance to cadmium and lead in environmental bacteria isolated from the San Cristobal River, Laguna de Bay, Philippines. International Journal of Environmental Studies, 78(1), Article 1. https://doi.org/10.1080/00207233.2020.1834307
Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65(4), 4. https://doi.org/10.1007/s00248-012-0159-y
Palzkill, T. (2018). Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Frontiers in Molecular Biosciences, 5, 16. https://doi.org/10.3389/fmolb.2018.00016
Pan, M. & Chu, L.M. (2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution, 231, 829–836. https://doi.org/10.1016/j.envpol.2017.08.051
Petinaki, E. & Papagiannitsis, C. (2018). Resistance of Staphylococci to Macrolides-Lincosamides-Streptogramins B (MLSB): Epidemiology and mechanisms of resistance. In Staphylococcus aureus. IntechOpen. https://doi.org/10.5772/intechopen.75192
Qian, X., Gunturu, S., Sun, W., Cole, J.R., Norby, B. & Gu, J., et al. (2021). Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces. Proceedings of the National Academy of Sciences, 118(25), e2024464118.
Ren, Z., Qu, X., Zhang, M., Yu, Y. & Peng, W. (2019). Distinct bacterial communities in wet and dry seasons during a seasonal water level fluctuation in the largest freshwater lake (Poyang Lake) in China. Frontiers in Microbiology, 10, 1167. https://doi.org/10.3389/fmicb.2019.01167
RStudio Team. (2020). RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. http://www.rstudio.com/
Salvador-Membreve, D.M. & Rivera, W.L. (2021). Predominance of blaTEM and tetA genes in antibiotic-resistant Escherichia coli isolates from Laguna Lake, Philippines. Journal of Water Sanitation and Hygiene for Development, 11(5). https://doi.org/10.2166/washdev.2 021.067
Slan, I., Paolicchi, F., Janstova, B., Navratilova, P. & Pavlik, I. (2008). Detection methods for Mycobacterium avium subsp. paratuberculosis in milk and milk products: A review. Veterinarni Medicina, 53(6), 283–306.
Suzuki, S., Ogo, M., Miller, T.W., Shimizu, A., Takada, H. & Siringan, M.A. (2013). Who possesses drug resistance genes in the aquatic environment?: Sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines. Frontiers in Microbiology, 4, 102. https://doi.org/10.3389/fmicb.2013.00102
Szemraj, M., Czekaj, T., Kalisz, J. & Szewczyk, E.M. (2019). Differences in distribution of MLS antibiotics resistance genes in clinical isolates of Staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BMC Microbiology, 19(1), 1. https://doi.org/10.1186/s12866-019-1496-5
Tenover, F.C. (2006). Mechanisms of antimicrobial resistance in bacteria. American Journal of Infection Control, 34(5 Suppl 1), S3–S10. https://doi.org/10.1016/j.ajic.2006.05.219
Thanner, S., Drissner, D. & Walsh, F. (2016). Antimicrobial resistance in agriculture. mBio, 7(2), e02227-15. https://doi.org/10.1128/mbio.02227-15
Ullmann, I.F., Tunsjø, H.S., Andreassen, M., Nielsen, K.M., Lund, V. & Charnock, C. (2019). Detection of aminoglycoside resistant bacteria in sludge samples from Norwegian drinking water treatment plants. Frontiers in Microbiology, 10, 487. https://doi.org/10.3389/fmicb.2019.00487
Verma, D.K. & Rathore, G. (2015). New host record of five Flavobacterium species associated with tropical freshwater farmed fishes from North India. Brazilian Journal of Microbiology, 46(4). https://doi.org/10.1590/S1517-838246420131081
Wan, Y., Wang, M., Chan, E.W.C. & Chen, S. (2024). Membrane transporters of the major facilitator superfamily are essential for long-term maintenance of phenotypic tolerance to multiple antibiotics in E. coli. Microbiology Spectrum, 9(3). https://doi.org/10.1128/Spectrum.01846-21
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 1. https://doi.org/10.1186/s13059-019-1891-0
Wu, Z., Che, Y., Dang, C., Zhang, M., Zhang, X. & Sun, Y., et al. (2022). Nanopore-based long-read metagenomics uncover the resistome intrusion by antibiotic resistant bacteria from treated wastewater in receiving water body. Water Research, 226, 119282. https://doi.org/10.1016/j.watres.2022.119282
Wu, Y. Zeng, Z. (2024). Antibiotic residues, antimicrobial resistance and intervention strategies of foodborne pathogens. Antibiotics, 13(4), 321. doi: 10.3390/antibiotics13040321
Yang, Y., Jiang, X., Chai, B., Ma, L., Li, B. & Zhang, A., et al. (2016). ARGs-OAP: Online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics, 32(15). https://doi.org/10.1093/bioinformatics/btw136
Young, A.L., Abaan, H.O., Zerbino, D., Mullikin, J.C., Birney, E. & Margulies, E.H. (2010). A new strategy for genome assembly using short sequence reads and reduced representation libraries. Genome Research, 20(2), 249–256.
Zheng, J., Zhou, Z., Wei, Y., Chen, T., Feng, W. & Chen, H. (2018). High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river. Environment International, 114, 87–94. https://doi.org/10.1016/j.envint.2018.02.039

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



