Distribution of soil fertility under various management systems of paddy fields of organic, semi-organic, and inorganic using clay content as a modified indicator
Article Main
Abstract
The amount of chemical inputs influences long-term soil nutrient balance. Therefore, different management practices will determine the sustainability of land use. This study aimed to determine the effects of paddy field management systems on the Soil Fertility Index (SFI), identify the characteristics of clay content and its effects on SFI, and identify the determinants of SFI. The originality of this research lies in identifying the determinants of soil fertility based on soil characteristics, enabling more focused, effective, and efficient land management recommendations. Soil sampling was carried out at 24 points, comprising 8 LMUs, across 3 types of rice field management and slope gradients (8-15%) in Purwantoro District, Wonogiri Regency. Parameters observed included pH, organic carbon (organic C), Total Nitrogen (N), available Phosphorus (P), available Potassium (K), base saturation, cation exchange capacity (CEC), Aluminium (Al) saturation, and clay content. The SFI class was generated by matching data with classification, while the influence of rice field management type on SFI was analyzed using ANOVA and the determining factors of SFI were analyzed using correlation test. The study found that the soil fertility index ranged from 0.33 (low) to 0.50 (moderate). The soil fertility of each type of rice field management varied, with organic rice fields having the highest soil fertility (0.48c), semi-organic rice fields (0.42c), and conventional rice fields (0.36a). Soil fertility was also related to the proportion of clay (r2=0.2112). The strongest factors determining soil fertility were Organic Carbon (0.905) and CEC (0.805).
Article Details
Article Details
Land management practices, nutrient availability , Soil chemical properties, Soil fertility index
Alwi, M., Yusuf, W. A. & Fahmi, A. (2021, February). Improving productivity of rice yield on tidal swampland using soil amendment. In IOP Conference Series: Earth and Environmental Science 648, No. 1, p. 012141). IOP Publishing. DOI 10.1088/1755-1315/648/1/012141
Amalia, D. & Fajri, R. (2020). Analisis kadar nitrogen dalam pupuk urea prill dan granule menggunakan metode kjeldahl di PT Pupuk Iskandar Muda. QUIMICA: Jurnal Kimia Sains dan Terapan, 2, 28–32. DOI: https://doi.org/10.33059/jq.v2i1.2639
Bagherzadeh, A., Gholizadeh, A. & Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated fuzzy and AHP approaches, northeast of Iran. Eurasian Journal of Soil Science, 7, 203–212. https://doi.org/10.18393/ejss.399775
Balittanah, (2009). Petunjuk teknis analisis kimia tanah, Tanaman, Air, dan Pupuk. Edited by B.H. Prasetyo, D. Santoso, and L.R. Widowati. Bogor: Balai penelitian tanah. Retrieved from https://repository.pertanian.go.id.
Barrow, N. J. & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37. https://doi.org/10.1007/s11104-023-05960-5
Baskan, O., Dengiz, O. & Demirag, İ.T. (2017). The land productivity dynamics trend as a tool for land degradation assessment in a dryland ecosystem. Environmental Monitoring and Assessment, 189(212). https://doi.org/10.1007/s10661-017-5909-3
Bebber, D. P. & Richards, V. R. (2022). A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Applied Soil Ecology, 175, 104450. https://doi.org/10.1016/j.apsoil.2022.104450
Chaudhry, H., Vasava, H. B., Chen, S., Saurette, D., Beri, A., Gillespie, A. & Biswas, A. (2024). Evaluating the soil quality index using three methods to assess soil fertility. Sensors, 24(3), 864. https://doi.org/10.3390/s24030864
Chen, D., Wei, W. & Chen, L. (2021). Effects of terracing on soil properties in three key mountainous regions of China. Geography and Sustainability, 2, 195–206. https://doi.org/10.1016/j.geosus.2021.08.002
Coblinski, J.A., Giasson, É., Demattê, J.A.M., Dotto, A.C., Costa, J.J.F. & Vašát, R. (2020). Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena, 189(July 2019). https://doi.org/10.1016/j.catena.2020.104485
Cucu, M.A., Said-Pullicino, D., Maurino, V., Bonifacio, E., Roman, M. & Celi, L. (2014). Influence of redox conditions and rice straw incorporation on nitrogen availability in fertilized paddy soils. Biology and Fertility of Soils, 50, 755–764. https://doi.org/10.1007/s00374-013-0893-4
Deng, X., Xu, X. & Wang, S. (2023). The tempo-spatial changes of soil fertility in farmland of China from the 1980s to the 2010s. Ecological Indicators, 146 (November 2022). https://doi.org/10.1016/j.ecolind.2023.109913
Fei, X., Xiao, R., Christakos, G., Langousis, A., Ren, Z. & Tian, Y. (2019). Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecological Indicators, 106(198), 105508. https://doi.org/10.1016/j.ecolind.2019.105508
Gaind, S. & Nain, L. (2011). Soil health in response to bio-augmented paddy straw compost. World Journal of Agricultural Sciences, 7(4), 480–488. http://www.idosi.org/wjas/wjas7(4)/17.pdf
Gobat, J.-M., Aragno, M. & Matthey, W. (2004). The living soil: fundamentals of soil science and soil biology. Science Pub. Inc. books.google.com
Han, J., Dong, Y. & Zhang, M. (2021). Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the loess plateau of china. Applied Soil Ecology, 165(26), 103966. https://doi.org/10.1016/j.apsoil.2021.103966
Hartono, A., Nadalia, D. & Satria, P.H. (2022). Aluminium dapat dipertukarkan dan fosfor tersedia pada tanah di provinsi bangka belitung. Jurnal Ilmu Tanah dan Lingkungan, 24(1), 20–24. DOI: https://doi.org/10.29244/jitl.24.1.20-24
Javed, A., Ali, E., Afzal, K. B., Osman, A. & Riaz, S. (2022). Soil fertility: Factors affecting soil fertility, and biodiversity responsible for soil fertility. International Journal of Plant, Animal and Environmental Sciences, 12(1), 21-33. DOI: 10.26502/ijpaes.202129
Johnson, J.M., Vandamme, E., Senthilkumar, K., Sila, A., Shepherd, K.D. & Saito, K. (2019). Near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa. Geoderma, 354(May). https://doi.org/10.1016/j.geoderma.2019.06.043.
Kwiatkowski, C.A., Harasim, E., Feledyn-Szewczyk, B. & Antonkiewicz, J. (2020). Enzymatic activity of loess soil in organic and conventional farming systems. Agriculture (Switzerland), 10(4), 1–14. https://doi.org/10.3390/agriculture10040135
Lee, J., Jo, N. Y., Shim, S. Y., Le, T. Y. L., Jeong, W. Y., Kwak, K. W., ... & Hwang, S. G. (2025). Impact of organic liquid fertilizer on plant growth of Chinese cabbage and soil bacterial communities. Scientific Reports, 15(1), 10439. https://doi.org/10.1038/s41598-025-95327-w
Ma, D., He, Z., Zhao, W., Li, R., Sun, W., Wang, W., ... & Ju, W. (2024). Long-term effects of conventional cultivation on soil cation exchange capacity and base saturation in an arid desert region. Science of The Total Environment, 949, 175075. https://doi.org/10.1016/j.scitotenv.2024.175075
Mujiyo, Hardian, T., Widijanto, H. & Herawati, A. (2022). Assessment of soil degradation potency for biomass production and the strategy for its management in Giriwoyo-Indonesia. IOP Conference Series: Earth and Environmental Science, 986(1). DOI 10.1088/1755-1315/986/1/012036
Mujiyo, M., Nugroho, D., Sutarno, S., Herawati, A., Herdiansyah, G. & Rahayu, R. (2022). Evaluasi kemampuan lahan sebagai dasar rekomendasi penggunaan lahan di Kecamatan Ngadirojo Kabupaten Wonogiri. Agrikultura, 33(1), 56. https://doi.org/10.24198/agrikultura.v33i1.37950
Mujiyo, Nariyanti, S., Suntoro, Herawati, A., Herdiansyah, G., Irianto, H., Riptanti, E.W. & Qonita, A. (2022). Soil fertility index based on altitude: A comprehensive assessment for the cassava development area in Indonesia. Annals of Agricultural Sciences, 67(2), 158–165. https://doi.org/10.1016/j.aoas.2022.10.001
Mockeviciene, I., Repsiene, R., Amaleviciute-Volunge, K., Karcauskiene, D., Slepetiene, A. & Lepane, V. (2022). Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Archives of Agronomy and Soil Science, 68(9), 1192-1204. https://doi.org/10.1080/03650340.2021.1875130
Mukashema, A. (2007). Mapping and modelling landscape-based soil fertility change in relation to human induction case study: GISHWATI Watershed of the Rwandan highlands mapping and modelling landscape-based soil fertility change in relation to human induction, Twente University.https://www.academia.edu/74475572/Mapping_and_Modelling_Landscape_based_Soil_Fertility_Change_in_Relation_to_Human_Induction
Nguyen, T. T., Sasaki, Y., Katahira, M. & Singh, D. (2021). Cow manure application cuts chemical phosphorus fertilizer need in silage rice in Japan. Agronomy, 11(8), 1483. https://doi.org/10.3390/agronomy11081483
Oechaiyaphum, K., Ullah, H., Shrestha, R.P. & Datta, A. (2020). Impact of long-term agricultural management practices on soil organic carbon and soil fertility of paddy fields in Northeastern Thailand. Geoderma Regional, 22. https://doi.org/10.1016/j.geodrs.2020.e00307.
Olsen, S.R. (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington DC: United States Department of Agriculture.
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B. & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and biofertilizers, Ecofriendly tools for reclamation of degraded soil environs (pp. 1-20). Cham: Springer International Publishing. DOIhttps://doi.org/10.1007/978-3-030-61010-4_1
Peng, G. A. O., Zhang, T., HUANG, J., ZHANG, Z. H. & ZHANG, H. M. (2023). Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture, 22(7), 2221-2232. doi: 10.1016/j.jia.2023.02.037
Prout, J.M., Shepherd, K.D., Kirk, G.J.D. & Haefele, S.M. (2021). What is a good level of soil organic matter? An index based on organic carbon to clay ratio. (June 2020), pp. 2493–2503. https://doi.org/10.1111/ejss.13012
Ross, D. & Kettering, Q. (2011). Recommended methods for determining soil cation exchange capacity. Chapter 9. Recommended soil testing procedures for the Northeasten United States. Cooperative Bulletin, 493, 75–86. Retrieved from http://extension.udel.edu/lawngarden/files/2012/10/CHAP9.pdf
Sanjaya, T.P., Syamsiyah, J., Ariyanto, D.P. & Komariah (2014). Element leaching potassium (K) and sodium (Na) material volcanic eruption of Mount Merapi Results 2010 (Simulation on Laboratory). Caraka Tani: Journal of Sustainable Agriculture, https://doi.org/10.20961/carakatani.v29i2.13374.
Sinha, D. & Tandon, P. K. (2020). An overview of nitrogen, phosphorus and potassium: Key players of nutrition process in plants. Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants, 85-117. https://doi.org/10.1007/978-981-15-8636-1_5
Tsymbarovich, P., Kust, G., Kumani, M., Golosov, V. & Andreeva, O. (2020). Soil erosion: An important indicator for the assessment of land degradation neutrality in Russia. International Soil and Water Conservation Research, 8(4), 418–429. https://doi.org/10.1016/j.iswcr.2020.06.002.
Widijanto, H., Anggasatya, D., Syamsiyah, J., Suntoro & Mujiyo (2021). Soil fertility index of organic, semi-organic, and conventional rice fields on 3 different soil types. Earth and Environmental Science, 905, 1–7. https://doi.org/10.1088/1755-1315/905/1/012041.
Xia, Q., Rufty, T. & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149(August). https://doi.org/10.1016/j.soilbio.2020.107953.
Xie, L.W., Zhong, J., Chen, F.F., Cao, F.X., Li, J.J. & Wu, L.C. (2015). Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth, 6(2), 515–524. https://doi.org/10.5194/se-6-515-2015.
Yan, C., Zhan, H., Yan, S., Gong, Z. & Barbie, M. (2016).Effects of straw retention and phosphorous fertilizer application on available phosphorus content in the soil solution during rice growth. Paddy and Water Environment, 14(1), 61–69. https://doi.org/10.1007/s10333-015-0478-y.
Yang, M., Mouazen, A., Zhao, X. & Guo, X. (2020). Assessment of a soil fertility index using visible and near- infrared spectroscopy in the rice paddy region of southern China. European Journal of Soil Science, 71, 615–626. https://doi.org/10.1111/ejss.12907.
Yang, Z.P., Zheng, S.X., Nie, J., Liao, Y.L. & Xie, J. (2014). Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. Journal of Integrative Agriculture, 13(8), 1772–1781. https://doi.org/10.1016/S2095-3119(13)60565-1.
Zhang, H., Ding, W., Yu, H. & He, X. (2015). Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fertil. Soils, 51(2), 137–150. https://link.springer.com/article/10.1007/s00374-014-0957-0.
Zhang, Q. & Wang, C. (2020). Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut., 231, 350. https://link.springer.com/article/10.1007/s11270-020-04728-2

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



