Article Main

Adzo Dzifa KOKUTSE Kossi Novinyo SEGLA Kossi ADJONOU Katche Komlanvi AKOETE Kossi HOUNKPATI Pyoabalo ALABA Gilles CHAIX Kouami KOKOU

Abstract

Teak (Tectona grandis), introduced to Togo in 1905, remains the main species for reforestation. However, the low productivity and poor wood quality of existing plantations, largely due to limited genetic diversity, have prompted the establishment of provenance trials at the Zogbépimé forest station in Togo. This study evaluated the growth performance of seven teak provenances (Avétonou, Indian, Tanzanian, Ivorian, and three Malaysian sources: Luasong, Perlis, and Taliwas) planted in a 3 × 3 m grid in the Guinean zone. Dendrometric parameters including total height, dominant height, diameter at breast height, basal area, and spacing factors were measured. ANOVA and Weibull distribution modelling, were used to assess growth differences and diameter structures. Productivity was estimated using a site index based on dominant height and stand age. Monitoring in 2022 (pre-thinning) and 2024 (post-thinning) showed that the Indian provenance had the best overall performance, with mean diameter increasing from 12.87 ± 3.85 cm to 17.91 ± 2.51 cm. Luasong exhibited superior height growth (16.85 ± 2.88 m) and high basal area (18.94 ± 0.13 m²/ha), while Tanzanian provenance reached the highest basal area (22.27 ± 0.14 m²/ha) and responded strongly to thinning. Avétonou maintained a large diameter (17.22 ± 2.92 cm) but lower height growth. Luasong achieved the highest site index (44.28), followed by Tanzanian and Indian provenances.The study emphasizes the importance of selecting high-performing provenances and implementing timely thinning to minimize competition and enhance resource utilization. Further research will assess the influence of wood quality and site on provenance performance.


 

Article Details

Article Details

Keywords

Dendrometric Measurements, Genetic Diversity, Plantation Productivity, Teak Provenances, Togo

References
Ali, S. (2002). Comparative study of the growth of two teak (Tectona grandis L.f.) Provenances in the taungya agroforestry system at Haho-Baloé (Togo). Thesis, school of agricultural engineering, University of Lomé. , Togo, 68 p.
Assogbadjo, A. E., Kakaï, R. L. G., Sinsin, B. & Pelz, D. (2010). Structure of Anogeissus leiocarpa Guill., Perr. natural stands in relation to anthropogenic pressure within Wari‐Maro Forest Reserve in Benin. African Journal of Ecology, 48(3), 644–653.
Aubréville, A. (1949). Climates, forests and desertification of tropical Africa. Geographical, maritime and colonial publishing society, Paris, 351 p.
Chaix, G., Monteuuis, O., Garcia, C., Alloysius, D., Gidiman, J., Bacilieri, R. & Goh, D. K. (2011). Genetic variation in major phenotypic traits among diverse genetic origins of teak (Tectona grandis L.f.) planted in Taliwas, Sabah, East Malaysia. Annals of Forest Science, 68, 1015–1026.
Dupuy, B. & Verhaegen, D. (1993). Plantation teak (Tectona grandis) in Côte d’Ivoire. Bois et Forêts des Tropiques, 235(1), 9–24.
Dupuy, B., Maître, H.-F. & Kanga, A. N. G. (1999). Yield table of teak (Tectona grandis): The case of Côte d’Ivoire.Bois et Forêts des Tropiques, 261, 5–16.
Ern, H. (1979). Die vegetation togo. gliederrung, gefährdung, erhaltung. Willdenowia, 9, 295–312.
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., ... & Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Ganglo, C. J., Lejoly, J. & Pipar, T. (1999). Teak (Tectona grandis L. f.) in Benin: Management and perspectives. Bois et Forêts des Tropiques, 261(3), 17–27.
Gaston, K. J., Davies, T. W., Bennie, J. & Hopkins, J. (2012). Reducing the ecological consequences of night-time light pollution: options and developments. Journal of Applied Ecology, 49, 1256–1266. https://doi.org/10.1111/j.1365-2664.2012.02212.x
Gedney, N. & Valdes, P. J. (2000). The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophysical Research Letters, 27(19), 3053–3056. https://doi.org/10.1029/2000GL011794
Gnanguenon-Guesse, D., Nounagnon, G. S., Aoudji, A. K. N. & Ganglo, J. C. (2017). Structural characteristics of teak plantations according to their age and the soil type in Southern and Central Benin. International Journal of Biological and Chemical Sciences, 11(5), 2119–2132. https://doi.org/10.4314/ijbcs.v11i5.8
Godeau, M. & Béhaghel, I. (1997). Comparative trial of teak (Tectona grandis L. f.) Provenances. Téné 74: Results at 22 Years (1996 Complete Inventory) – Supplement: Medium-Term Trial. CIRAD-Forêt, Abidjan, 16 p.
Goh, D. K. & Monteuuis, O. (2016). Current developments in teak cloning with special reference to the SomaClone system. Bois et Forêts des Tropiques, 327(1), 39–49. https://doi.org/10.19182/bft2016.327.a31255
Goh, D. K. & Monteuuis, O. (2012). Behaviour of the “Ysg Biotech TG1-8” teak clones under various site conditions: First observations. Bois et Forêts des Tropiques. http://bft.cirad.fr/revues/notice_fr.php?dk=564461
Gourlet-Fleury, S., Mortier, F., Fayolle, A., Saint-André, L., Picard, N., Baraloto, C., ... & Sist, P. (2013). Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120302. https://doi.org/10.1098/rstb.2012.0302
Herrero-Jáuregui, C., Sist, P. & Casado, M. A. (2012). Population structure of two low-density neotropical tree species under different management systems. Forest Ecology and Management, 280, 31–39.
Hetemäki, L. & Hurmekoski, E. (2016). Forest products markets under change: Review and research implications. Current Forestry Reports, 2, 177–188. https://doi.org/10.1007/s40725-016-0042-z
Husch, B., Beers, T. W. & Kershaw, J. A. (2003). Forest Mensuration (4th ed.). New York: John Wiley & Sons.
Huy, B., Truong, N. Q., Khiem, N. Q., Poudel, K. P. & Temesgen, H. (2022). Stand growth modeling system for planted teak (Tectona grandis L.f.) in tropical highlands. Trees, Forests and People, 9, 100308. https://doi.org/10.1016/j.tfp.2022.100308
Kjaer, B., Jensen, J. & Giese, H. (1995). Quantitative trait loci for heading date and straw characters in barley. Genome, 38(6), 1098–1104.
Kainyande, A., Auch, E. F. & Okoni-Williams, A. D. (2022). The socio-economic contributions of large-scale plantation forests: perceptions of adjacent rural communities in the Northern Province of Sierra Leone. Trees, Forests and People, 10, 100329. https://doi.org/10.1016/j.tfp.2022.100329
Keiding, H., Wellendorf, H. & Lauridsen, E. B. (1986). Evaluation of an international series of teak provenance trials. CABiDigitalLibrary.org, v + 81 p.
Kenny, A. L., Pickens, J. B. & Orr, B. (2014). Land allocation with the introduction of teak: A case study of smallholder farms in Southern Togo. Journal of Sustainable Forestry, 33, 776–795. https://doi.org/10.1080/10549811.2014.925810
Kokutse, A. D., Akpenè, A. D., Monteuuis, O., Akossou, A., Langbour, P., Guibal, D., Tomazello, M. F., Gbadoe, E., Chaix, G. & Kokou, K. (2016). Selection of plus trees for genetically improved teak varieties produced in Benin and Togo. Bois et Forêts des Tropiques, 328(2), 55–66.
Kokutse, A. D., Adjonou, K., Kokou, K. & Gbéassor, M. (2009). Issues regarding the performance of Tanzanian teak provenance compared to local teak in plantations in Togo. Bois et Forêts des Tropiques, 302, 43–62.
Köppen, W. (1901). Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Meteorologische Zeitschrift, 18, 106–120.
Korobko, E., Zhurauski, M., Novikova, Z. & Kuzmin, V. (2009). Rheological properties of magnetoelectrorheological fluids with complex disperse phase. Journal of Physics: Conference Series, IOP Publishing, 012065.
Kumi, J. A., Kyereh, B., Ansong, M. & Asante, W. (2021). Influence of management practices on stand biomass, carbon stocks and soil nutrient variability of teak plantations in a dry semi-deciduous forest in Ghana. Trees, Forests and People, 3, 100049. https://doi.org/10.1016/j.tfp.2020.100049
Krainovic, P. M., de Resende, A. F., Amazonas, N. T., Torres de Almeida, C., Alves de Almeida, D. R., Silva, C. C., Freire de Andrade, H. S., Rodrigues, R. R. & Brancalion, P. H. S. (2023). Potential native timber production in tropical forest restoration plantations. Perspectives in Ecology and Conservation, 21, 294–301.
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benítez-Malvido, J., Vasconcelos, H. L., Van Houtan, K. S., Zartman, C. E., Boyle, S. A., Didham, R. K., Andrade, A. & Lovejoy, T. E. (2011). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 56–67.
Maldonado, G. & Louppe, D. (2000). Challenges of teak in Côte d’Ivoire. Unasylva, 201, 36–44.
Monteuuis, O., Goh, D.K.S., García, C., Alloysius, D., Gidiman, J., Bacilieri, R. & Chaix, G. (2011). Genetic variation of growth and tree quality traits among 42 diverse genetic origins of Tectona grandis planted under humid tropical conditions in Sabah, East Malaysia. Tree Genetics & Genomes, 7, 1263–1275.
Mori, A. S. (2017). Biodiversity and ecosystem services in forests: management and restoration founded on ecological theory. Journal of Applied Ecology, 54(1), 7-11.
Nero, B. F. & Asuenabisa, M. (2023). Effects of thinning on growth performance of teak (Tectona grandis) plantations in Tain II Forest Reserve, Ghana. Southern Forests: a Journal of Forest Science, 85(3‑4), 1–11. DOI : 10.2989/20702620.2023.2257657.
Njana, M. A., Mbilinyi, B. & Eliakimu, Z. (2021). The role of forests in the mitigation of global climate change: Emprical evidence from Tanzania. Environmental Challenges, (4), 100170.
Pastorella, F. & Paletto, A. (2013). Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). Journal of Forest Science, 59(4), 159–168. doaj.org+2agriculturejournals.cz+2
Pedersen, A. P., Hansen, J. K., Mtika, J. M. & Msangi, T. H. (2007). Growth, stem quality and age–age correlations in a teak provenance trial in Tanzania. Silvae Genetica, 56(3‑4), 142–148. DOI : 10.1515/sg-2007-0022
Peña‑Claros, M., Fredericksen, T. S., Alarcón, A., Blate, G. M., Choque, U., Leãno, C. & Licona, J. C. et al. (2008). Beyond reduced‑impact logging: silvicultural treatments to increase growth rates of tropical trees. Forest Ecology and Management, 256, 1458–1467. DOI : 10.1016/j.foreco.2007.11.013.
Pretzsch, H. (1998). Structural diversity as a result of silvicultural operations. Lesnictvi-Forestry, 44(10), 429–439.
Rahman, M., Davies, P., Bansal, U., Pasam, R., Hayden, M. & Trethowan, R. (2020). Marker‑assisted recurrent selection improves the crown rot resistance of bread wheat. Molecular Breeding, 40, (3) 28. DOI : https://doi.org/10.1007/s11032-020-1105-1.
Salekin, S., Mason, E. G., Morgenroth, J. & Meason, D. F. (2020). A preliminary growth and yield model for Eucalyptus globoidea Blakely plantations in New Zealand. New Zealand Journal of Forestry Science, 50(2). DOI : 10.33494/nzjfs502020x55x
Sbay, H. &, M.S. (2015). Practical guide for vegetative propagation of forest species: Techniques for the valorization and conservation of multipurpose species in the face of climate change in North Africa. Kingdom of Morocco, high commission for water, forests and the fight against desertification, Forest Research Center, pp. 1–34.
Seppänen, P. & Mäkinen, A. (2020). Comprehensive yield model for plantation teak in Panama. Silva Fennica, 54(5), article id 10309. DOI: 10.14214/sf.10309.
Shivanna, K. R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy, 88(2), 160-171. https://doi.org/10.1007/s43538-022-00073-6
Sinacore, K., Breton, C., Asbjornsen, H., Hernández‑Santana, V. & Hall, J. S. (2019). Drought effects on Tectona grandis water regulation are mediated by thinning, but the effects of thinning are temporary. Frontiers in Forests and Global Change, 2, Article 82. DOI : 10.3389/ffgc.2019.00082.
Sintayehu, D. W. (2018). Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosystem Health and Sustainability, 4(9), 225-239. https://doi.org/10.1080/20964129.2018.1530054
Skovsgaard, J. P. & Vanclay, J. K. (2013). Forest site productivity: a review of spatial and temporal variability in natural site conditions. Forestry: An International Journal of Forest Research, 86(3), 305–315.
Souza, H. J. de, Miguel, E. P., Nascimento, R. G. M., Cabacinha, C. D., Rezende, A. V. & Santos, M. L. (2022). Thinning‑response modifier term in growth models: An application on clonal Tectona grandis Linn F. stands in the amazon region. Forest Ecology and Management, 511, 120109. DOI : 10.1016/j.foreco.2021.12010
Tengué, K. T. (1991). Teak plantation cubing rates in Togo. 13 pp.
Turner-Skoff, J.B. & Nicole Cavender, N. (2019). The benefits of trees for livable and sustainable communities. Plants People Planet, 1(4), 323–335.
Verhaegen, D., Fofana, I. J., Logossa, Z. A. & Ofori, D. (2010). What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia? Tree Genetics & Genomes, 6(5), 717–733.
Wang, J., Taylor, A., D’Orangeville, L., Vargas-Rivera, M., Girardin, S., Pid”rie, M.-J., Price, D.T., Côté, D., Bélanger, Y., Gauthier, G., Bergeron, F., Mäkinen, M., Girardin, M.P., Latifović, J., Paré, D., Bélanger, P., De Grandpré, N. & Messier, L. (2023). Tree species growth response to climate warming varies by forest canopy position in boreal and temperate forests. Global Change Biology. DOI : 10.1111/gcb.16853.
Wells, J. J., Stringer, L. C., Woodhead, A. J. & Wandrag, E. M. (2023). Towards a holistic understanding of non-native tree impacts on ecosystem services: A review of Acacia, Eucalyptus and Pinus in Africa. Science of the Total Environment, 858, 159988
Section
Research Articles

How to Cite

Monitoring adaptation and productivity of teak plantations in the Guinean Zone of Togo: A comparative study of historical and newly introduced provenances. (2025). Journal of Applied and Natural Science, 17(4), 1912-1928. https://doi.org/10.31018/jans.v17i4.6991