A review on new horizons in biopesticide development highlighting microbial advances for Climate-smart agriculture
Article Main
Abstract
Sustainable plant protection is vital for continuing improved agricultural productivity and safeguarding global food security. Reliance on synthetic pesticides to mitigate pest outbreaks has led to unintended environmental and health-related concerns, including soil degradation, water pollution, and bioaccumulation within ecosystems. These challenges have accelerated the push for eco-friendly, sustainable pest management alternatives. Biopesticides derived from natural sources offer a promising solution due to their target specificity, environmental safety, and high compatibility with integrated pest management principles. Biopesticides include viruses, bacteria, fungi, parasites, predators, and pheromones, each with distinct mechanisms of action. Despite these advantages, limitations exist in registration, regulation and social acceptance of biopesticides. This review provides a comprehensive overview of biopesticide categories -microbial, phytochemical, and nanobiopesticides and their mechanisms of action, advantages, and limitations. Moreover, the emphasis is placed on microbial pesticides, which differ from their chemical counterparts in their ability to multiply in situ and exhibit long-lasting effects. This review further underscores the significance of biopesticides in fostering climate-smart agriculture, advancing public health, and achieving Sustainable Development Goal targets. This review also underscores the need for ongoing research, innovation, and public involvement to promote the acceptance and commercial success of biopesticide-based solutions in global agriculture.
Article Details
Article Details
Climate smart agriculture, Formulations, Integrated pest management, Microbial biopesticide, Sustainable agriculture
Abbey, L., Abbey, J., Leke-Aladekoba, A., Iheshiulo, E. M. A. & Ijenyo, M. (2019). Biopesticides and biofertilizers: Types, production, benefits, and utilization. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, Wiley, 479–500
Abd-Alla, Adly., Meki, Irene. & Demirbas-Uzel, Güler. (2020). Insect viruses as biocontrol agents: Challenges and opportunities, Cottage industry of biocontrol agents and their applications, Springer international publishing, 277-295 doi: 10.1007/978-3-030-33161-0_9
Adeleke, B. S., Ayilara, M. S., Akinola, S. A. & Babalola, O. O. (2022). Biocontrol mechanisms of endophytic fungi. Egypt. J. Biol. Pest Control, 32, 1–17. doi: 10.1186/s41938-022-00547-1
Adesemoye, A, O. & Kloepper, J, W. (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol., 85, 1–12. doi: 10.1007/s00253-009-2196-0
Ahmed, B. & Javed, S. (2024). Comparative Effects of entomopathogenic nematodes, biopesticides, and plant extracts against agricultural pest Meloidogyne incognita (Tylenchida: Heteroderidae). Pak. J. Nematol, 42(2), 171-179. https://dx.doi.org/10.17582/journal.pjn/2024/42.2.171.179
Aioub, A., El Ashry, R., Hashem, A., Elesawy, A. & El-Sobki, A. (2021). Compatibility of entomopathogenic nematodes with insecticides against the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae), Egypt. J. Biol. Pest Control., 31. doi:10.1186/s41938-021-00498-z
Akutse, K. S., Subramanian, S. & Maniania, N. (2020). Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol., 144, 777–787. https://doi.org/10.1111/jen.12812
Ali, M. A., Doaa, S. M., El-Sayed, H. S. & Asmaa, M. E. (2017). Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J. Entomol. Zool., 5, 1476–1482
Anani, O. A., Mishra, R. R., Mishra, P., Enuneku, A. A., Anani, G. A. & Adetunji, C. O. (2020). “Effects of toxicant from pesticides on food security: current developments” in Innovations in Food Technology. Springer, Newyork,313–321. doi:10.1007/978-981-15-6121-4_22
Ara, I., Bukhari, N. A. & Aref, N. (2014). Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: evaluation of different organic compounds in their metabolites. Afr. J. Biotechnol., 11, 2130–2138. doi: 10.5897/AJB11.3388
Arcot, Y., Iepure, M., Hao, L., Min, Y., Behmer, S. T. & Akbulut, M. (2024). Interactions of foliar nanopesticides with insect cuticle facilitated through plant cuticle: effects of surface chemistry and roughness-topography-texture. Plant Nano Biol., 7, 100062. doi: org/10.1016/j.plana.2024.100062
Arora, N. K., Mishra, J. & Dutta, V. (2020). Biopesticides in India: technology and sustainability linkages. 3 Biotech, 10, 210–212. DOI:10.1007/s13205-020-02192-7
Arthurs, S. & Dara, S. K. (2019). Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol., 165, 13-21. doi: 10.1016/j.jip.2018.01.008
Ashaolu, C. A., Okonkwo, C. O., Njuguna, E. & Ndolo, D. (2022). Recommendations for effective and sustainable regulation of biopesticides in Nigeria. Sustainability, 14, 2846
Askary, T., Khalil, A., Nazir, N., Khan, A. & Banday, S. (2018). Nematode parasites of grapevines, Biocontrol, Doi:10.1007/978-3-319-94232-2_7
Aswathi, N., Balakrishnan, N., Srinivasan, T., Kokiladevi, E. & Raghu, R. (2024). Diversity of Bt toxins and their utility in pest management. Egypt. J. Biol. Pest Control, 34, 40
Baldiviezo, L. V., Pedrini, N. & Santana, M. (2020). Isolation of Beauveria bassiana from the chagas disease vector Triatoma infestans in the gran chaco region of argentina: assessment of gene expression during host- pathogen interaction. J. Fungi, 6, 219. doi: 10.3390/jof6040219
Bamisile, B. S., Siddiqui, J. A., Akutse, K. S., Aguila, L. C. R. & Xu, Y. (2021). General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants, 10(10), 2119
Barber, A., Friedrichs, J. & Müller, C. (2024). Gregarines impact consumption and development but not glucosinolate metabolism in the mustard leaf beetle. Front. Physiol., 15 (01 May 2024). doi: 10.3389/fphys.2024.1394576
Behle, R. & Birthisel, T. (2023). Formulations of entomopathogens as bioinsecticides. In Mass production of beneficial organisms, Academic press. 407-429. doi:10.1016/B978-0-12-822106-8.00010-5
Bessette, E. & Williams, B. (2022). Protists in the insect rearing industry: benign passengers or potential risk? Insects, 13(5), 482. doi: 10.3390/insects13050482
Bharti, V. & Ibrahim, S. (2020). Biopesticides: Production, formulation and application systems. Int. J. Curr. Microbiol. App. Sci., 9(10), 3931-3946. doi: 10.20546/ijcmas.2020.910.453
Bhattacharyya, P. N., Nath, B. C., Sarma, B., Al-Ani, L. K. T., Borgohain, D. J., Garganese, F. & Kumari, R. (2024). Interaction of Metarhizium anisopliae against emergent insect pest problems in the North-Eastern tea industry. In Entomopathogenic Fungi: Prospects and Challenges, 319–357
Boateng, K. O., Dankyi, E., Amponsah, I. K., Awudzi, G. K., Amponsah, E. & Darko, G. (2023). Knowledge, perception, and pesticide application practices among smallholder cocoa farmers in four Ghanaian cocoa-growing regions. Toxicol Rep., 10:46–55. https:// doi. org/ 10. 1016/j. toxrep. 2022. 12. 008
Bream, A., Fouda, M. A., Shehata, I. & Ragab, S. (2018). Evaluation of four entomopathogenic nematodes as biological control agents against the housefly, Musca domestica L. (Diptera: muscidae). Egypt. Acad. J. Biol. Sci. A, Entomol., 11(1), 79-89. doi: 10.21608/eajb.2018.11982
Chakraborty, N., Mitra, R., Pal, S., Ganguly, R., Acharya, K., Minkina, T., Sarkar, A. & Keswani, C. (2023). Biopesticide consumption in India: Insights into the current trends. Agriculture, 13, 57. https:// doi.org/10.3390/agriculture13030557
Chakroun, M., Banyuls, N., Bel, Y., Escriche, B. & Ferré, J. (2016). Bacterial vegetative insecticidal proteins (Vip) from Entomopathogenic bacteria. Microbiol Mol Biol Rev., 80(2), 329-50. doi: 10.1128/MMBR.00060-15
Chambers, A. C., Aksular, M., Graves, L. P., Irons, S. L., Possee, R. D. & King, L. A. (2018). Overview of the baculovirus expression system. Current Protocols in Potein Science, willey, 91(1), 5-4. doi: 10.1002/cpps.47
Chang, Y., Xia, X., Sui, L., Kang, Q., Lu, Y., Li, L., Liu, W., Li, Q. & Zhang, Z. (2021). Endophytic colonization of entomopathogenic fungi increases plant disease resistance by changing the endophytic bacterial community. J. Basic Microbiol., 61(9), 1098–1112
Chen, D., Wang, B., Yang, X., Weng, X. & Chang, Z. (2023). Improving recognition accuracy of pesticides in groundwater by applying TrAdaBoost transfer learning method. Sensors, 23(8):3856. https:// doi. org/ 10. 3390/s2308 3856
Chetan, K., Dilnashin, H., Birla, H. & Singh, S. P. (2019). Regulatory barriers to agricultural research commercialization: A case study of biopesticides in India. Rhizosphere, 11, 100155. https://doi.org/10.1016/j.rhisph.2019.100155
da Silva, H. A. O., Teixeira, W. D., Borges, Á. V., Silva, Junior. A. L., Alves, K. S., Rodrigues, Junior. O. M. & de Abreu, L. M. (2021). Biocontrol of potato early blight and suppression of Alternaria grandis sporulation by Clonostachys spp. Plant Pathol., 70(7), 1677-1685. https://doi.org/10.1111/ppa.13402
Damalas, C. A. & Koutroubas, S. D. (2018). Current status and recent developments in biopesticide use. Agriculture, 8(1), 13
Daniel, R. T. (2020). Effect of the Bioherbicide Pseudomonas fluorescens D7 on downy brome (Bromus tectorum). Rangel. Ecol. Manag., 73, 753–755. doi: 10.1016/j.rama.2019.10.007
De Oliveira Giannasi, A., Roque Brambila, C., Zart, M., Guide, B. A. & Alves, V. S. (2018). Assessment of entomopathogenic nematodes in Agrotis ipsilon (Lepidoptera: Noctuidae) under laboratory and greenhouse conditions. Revista Colombiana de Entomología, 44(1), 25-31. DOI:10.25100/socolen.v44i1.6533
Desneux, N., Han, P., Mansour, R., Arnó, J., Brévault, T. & Campos, M. R. (2021). Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest. Sci., 1, 1–23. doi: 10.1007/S10340-021-01442-8
Devi, G. (2020). Entomopathogenic nematodes against insect pests of rice. Int. J. Environ. Agric. Biotech., 5(4), 1143-1150. doi: 10.22161/ijeab.54.34
Djaenuddin, N. & Suriani, S., & Muis, A. (2020). Effectiveness of Bacillus subtilis TM4 biopesticide formulation as biocontrol agent against maydis leaf blight disease on corn. International Conference on Sustainable Cereals and Crops Production Systems in the Tropics, 23-25. doi: 10.1088/1755-1315/484/1/012096
EPA (2023). What are Biopesticides? Environmental Protection Agency (EPA)2023. pp. 1-3
Erlandson, M. (2020). Advances in the use of entomopathogenic viruses as biopesticides in suppressing crop insect pests. In Biopesticides for sustainable agriculture, 167-194. doi: 10.19103/AS.2020.0073.09
Felix, d’Herelle (1911). Sur une ´epizootie de nature bact´erienne s´evissant sur les sauterelles au Mexique, C. R. Acad. Sci., 152, 1413–1415
Faria, M., Palhares, L. A. M., Souza, D. A. & Lopes, R. B. (2022). What would be representative temperatures for shelf-life studies with biopesticides in tropical countries Estimates through long-term storage of biocontrol fungi and calculation of mean kinetic temperatures. BioControl., 67(2), 213-224. doi:10.1007/s10526-021-10126-2
Farooq, M. A., Arif, M. J., Gogi, M. D., Nawaz, A. & Atta, B. (2019). Comparative efficacy of different pesticide residue mitigation modules in mango. Am. J. Biomed. Sci. Res., 4, 214–219. doi: 10.34297/AJBSR.2019.04.000801
Fatimah, N., Askary, T. H. & Abd-Elgawad, M. M. M. (2025). Factors influencing the performance of entomopathogenic nematodes: From laboratory to field conditions. Egypt. J. Biol. Pest Control., 35, 29
Federici, B.A. (1999). A perspective on pathogens as biological control agents for insect pests. In T.S. Bellows & T.W. Fisher (Eds.), Handbook of biological control: Principles and applications of biological control (pp. 517–548). Academic Press.
Feng, K. C., Liu, B. L. & Tzeng, Y. M. (2000). Verticillium lecanii spore production in solid- state and liquid-state fermentations. Bioprocess Eng., 23, 25–29. doi: 10.1007/s004499900115
Fenibo, E. O., Ijoma, G. N., Nurmahomed, W. & Matambo, T. (2022). The potential and green chemistry attributes of biopesticides for sustainable agriculture. Sustainability, 14(21), 14417. doi: 10.3390/su142114417
Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B. & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154.
Fuenmayor, Y., Portillo, E., Bastidas, B., Guerra, M. & San-Blas, E. (2020). Infection parameters of Heterorhabditis amazonensis (Nematoda: Heterorhabditidae) in different stages of Hibiscus pink mealybug. J. Nematol., 52, 77. doi: 10.21307/jofnem-2020-077
Gabrielová, A., Mencl, K., Suchánek, M., Klimeš, R., Hubka, V. & Kolařík, M. (2018). The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia, 183(5), 751. https://doi.org/10.1007/s11046-018-0277-2
Ganguli, P. (2019) Patenting issues in the development of nanobiopesticides. In: Nano-Biopesticides today and future perspectives. Academic Press, 367-395. doi: 10.1016/B978-0-12-815829-6.00017-6
García-Espinoza, F. (2024). Multifunctional entomopathogenic ascomycetes for" cotton leafworm" Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae) control in cucurbits. Biol. Control, 92(10), 101-110. doi:10.1016/j.biocontrol.2015.10.007
Geisler, F. C. S., Martins, L. N., Machado, I. E. D. F., Matozo, L. F., Lucena, W. F., Soares, V. N., Pazini, J. d. B., Schneid da Rosa, A. P. S. A. & Bernardi, D. (2024). The biological activity of an Sf MNPV-Based biopesticide on a resistant strain of Spodoptera frugiperda developing on transgenic corn xpressing Cry1A. 105+ Cry2Ab2+ Cry1F insecticidal protein. Agronomy, 14(8), 1632. doi: 10.3390/agronomy14081632
Gelaye, Y. & Negash, B. (2023). The role of baculoviruses in controlling insect pests: A review. COGENT FOOD AGR, 9(1), 2254139. doi: 10.1080/23311932.2023.2254139
Germaine, K. J., Keogh, E. & Ryan, D. (2009). Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol. Lett., 296. doi: 10.1111/j.1574-6968.2009.01637.x
Ghayur, A. (2000). A study of biopesticides and biofertilisers in Haryana. India: 2000. Gill SS, Cowles PP: Mode of action of Bacillus thuringiensis endotoxins. https://www.iied.org/6348iied
Ghodake, V. N., Naik, S. V., Bhukhanwala, K. N., Kande, K. V., Bhor, N. J. & Patravale, V. B. (2018). Nanoengineered systems for biopesticides. In Handbook of Nanomaterials for Industrial Applications, Elsevier, 243-259
Ghumar, V., Sharma, N., Gavkare, O., Khachi, B. & Singh, D. K. (2014). Biopesticides—for future. J. Ind. Pollut.Control., 30, 203–205
Glare, T. R., Caradus, J. R., Gelernter, W., Jackson, T., Keyhani, N., Kohl, J., Marrone, P., Morin, L. & Stewart, A. (2012). Have biopesticides come of age, Trends Biotechnol., 35(3), 250-261. doi: 10.1016/j.tibtech.2012.01.003
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo), 963401. doi: 10.6064/2012/963401
Godjo, T. A. (2018). Entomopathogenic nematodes and their symbiotic bacteria to control fruit flies (Bactrocera dorsalis) in mango cultivation in Benin (Doctoral dissertation, Ghent University)
Gonzalez-Franco, Ana. & Robles-Hernandez, Loreto. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. Techno Chih III, 2, 64-73
Gozel, U. & Gozel, C. (2021). Entomopathogenic nematodes in pest management [Internet]. Integrated pest management (IPM): Environmentally sound pest management. https://doi.org/10.5772/63894
Grushevaya, I., Ignatieva, A. & Tokarev, Y. (2020). Susceptibility of three species of the genus Ostrinia (Lepidoptera: Crambidae) to Nosema pyrausta (Microsporidia: Nosematida). BIO Web of Conferences, 21, 00040. https://doi.org/10.1051/bioconf/20202100040
Gurr, G. M., Thwaite, W. G. & Nicol, H. I. (1999). Field evaluation of the effects of the insect growth regulator (tebufenozide) on entomophagous arthropods and pests of apples. Austr. J. Entomol., 38, 135–140. https://doi.org/10.1046/j.1440-6055.1999.00097.x
Gwinn, K. D. (2018). Bioactive natural products in plant disease control. In studies in natural products chemistry; Attaur, R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 56, 229–246
Halder, J., Rai, A. B. & Kodandaram, M. H. (2013). Compatibility of neem oil and different entomopathogens for the management of major vegetable sucking pests. Natl. Acad. Sci. Lett., 36, 19–25. doi:10.1007/s40009-012-0091-1
Han, B. & Weiss, L. M. (2017). Microsporidia: Obligate intracellular pathogens within the fungal kingdom. Microbiology Spectrum, 5(2), 17
Han, H., Zou, K. & Yuan, Z. (2024). Impact of specialized agricultural services on climate-smart agricultural practices: Evidence from biopesticide application in Jiangsu Province, China. Environ. Impact Assess. Rev., 105, 107430
Harish, S., Murugan, M., Kannan, M., Parthasarathy, S., Prabhukarthikeyan, S. R. & Elango, K. (2021). Entomopathogenic viruses. Microbial approaches for insect pest management, 1-57. doi: 10.1007/978-981-16-3595-3
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species —Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2(1), 43-56. https://doi.org/10.1038/nrmicro797
Hashimi, M. H., Hashimi, R. & Ryan, Q. (2020). Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res. J., 5, 37–47. doi: 10.9734/aprj/2020/v5i430114
Hernandez-Tenorio, F., Miranda, A. M., Rodríguez, C. A., Giraldo-Estrada, C.& Sáez, A. A. (2022). Potential strategies in the biopesticide formulations: a bibliometric analysis. Agronomy, 12(11), 2665. doi.org/10.3390/agronomy12112665
Huang, Y., Zhaoliang, Li., Luo, X. & Liu, D. (2021). Biopesticides extension and rice farmers’ adoption behavior: a survey from Rural Hubei Province, China. Environ. Sci. 29, 51744–51757. doi:10.21203/rs.3.rs-996808/v1
Hubbard, M., Hynes, R. K. & Erlandson, M. (2014). The biochemistry behind biopesticide efficacy. Sustain. Chem. Process., 2, 18. https://doi.org/10.1186/s40508-014-0018-x
Irsad, S., Haq, E., Mohamed, A., Rizvi, P. Q. & Kolanthasamy, E. (2023). Entomopathogen-based biopesticides: Insights into unraveling their potential in insect pest management. Front. Microbiol., 14, 1208237
Jaber, L. R. & Ownley, B. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control, 116, 36
Jagadeesan, Y., Meenakshisundaram, S., Pichaimuthu, S. & Balaiah, A. (2024). A scientific version of understanding “Why did the chickens cross the road”? A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. Environ. Res., 244, 117907
Jahan Shaili, S., Kabiraj, U. K. & Mahedi, M. (2025). Fungal biocontrol in agriculture: A sustainable alternative to chemical pesticides – A comprehensive review. World J. Advanced Res. Rev., 26(1), 2305–2316
Jayaseelan, T. (2024). Sustainable agriculture: Exploring the potential of biopesticides. Int. J. Entomol. Res., 9(12), 44–49
Jukes, M. & Van der Merwe, M. (2020). Viruses as biopesticides. Quest, 16(1), 14-15
Kachhawa, D. (2017). Microorganisms as a biopesticides. J. Entomol. Zool. Stud., 5(3), 468–473
Kalen, A., Kara, F. & Öztürk, F. (2022). Characterization, distribution, and virulence of protistan entomopathogen, Mattesia dispora (Sporozoa, Gregarina) in the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) populations in Turkey. Egypt. J. Biol. Pest Control, 32, Article 14. doi:10.1186/s41938-022-00583-x
Kalpana, A. K. (2021). A review of biopesticides and their plant phytochemicals information. Ann. Rom. Soc. Cell Biol., 3576–3588
Kariyanna, B., Senthil-Nathan, S. & Vasantha-Srinivasan, P. (2024). Comprehensive insights into pesticide residue dynamics: unraveling impact and management. Chem. Biol. Technol. Agric., 11, 182. https://doi.org/10.1186/s40538-024-00708-4
Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E. & Rasmann, S. (2016). Biological control beneath the feet: a review of crop protection against insect root herbivores. Insects, 7(4), 70. doi.org/10.3390/insects7040070
Khan, M., Anwar, H., Ullah, S. & Iqbal, A. (2023). Streptomyces spp. as a potential biocontrol agent against fungal pathogens: Advances and challenges. Biol. Control, 185, 105435. doi: https://doi.org/10.55446/hexa.2024.51
Khursheed, A., Rather, M. A., Jain, V., Rasool, S., Nazir, R., Malik, N. A. & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog., 173, 105854. doi: 10.1016/j.micpath.2022.105854
Kim, J. J. & Goettel, M. S. (2011). Evaluation of Lecanicillium longisporum, Vertalec against the cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, in a greenhouse environment. Crop Prot., 29, 540–544
Koike, M., Shinya, R., Aiuchi, D., Mori, M., Ogino, R., Shinomiya, H., Tani, M. & Goettel, M (2011). Future biological control for soybean cyst nematode. In H. A. El-Shemy (Ed.), Soybean physiology and biochemistry (pp. 193–208)
Kojima, T., Yamato, S. & Kawamura, S. (2022). Natural and synthetic pyrethrins act as feeding deterrents against the black blowfly, Phormia regina (Meigen). Insects, 13(8), 678. https://doi.org/10.3390/insects13080678
Kumar, J., Ramlal, A., Mallick, D. & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185. doi.org/10.3390/plants10061185
Kumar, S. (2012). Biopesticides: A need for food and environmental safety. J. Biofertil. Biopestic, 3, 4. doi:10.4172/2155-6202.1000e107
Kumar, V. & Kumar, P. (2019). “Pesticides in agriculture and environment: impacts on human health” in Contaminants in agriculture environment: Health risks remediation, Vol. 1. eds. V. Kumar, R. Kumar, J. Singh and P. Kumar (India: ture and Environmental Science Academy), 76–95
Kumari, I., Hussain, R. & Sharma, S. (2022). Microbial biopesticides for sustainable agricultural practices. Biopesticides. Elsevier, 301–317. DOI:10.1016/B978-0-12-823355-9-00024-9
Law, J. W., Ser, H. L. & Khan, T. M. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol., 8, 3. doi: 10.3389/fmicb.2017.00003
Lee, J. Y., Kang, S. W. & Yoon, C. (2006). Verticillium lecanii spore formulation using UV protectant and wetting agent and the biocontrol of cotton aphids. Biotechnol. Lett., 28, 1041–1045. Doi: 10.1007/s10529-006-9036-4
Li, E. T., Zhang, S., Li, K. B., Nyamwasaa, I., Li, J. Q., Li, X. F., Quin, J. H & Yin, J. (2021). Efficacy of entomopathogenic nematode and Bacillus thuringiensis combinations against Holotrichia parallela (Coleoptera: Scarabaeidae) larvae. Biol. Control, 152, 104469. doi: 10.1016/j.biocontrol.2020.104469
Li, T., Jiang, Y., Zhang, Y., Wu, Y., Wilson, K. & Xu, P. (2025). Native mid-gut bacterial community increases resistance to nucleopolyhedrovirus in the cotton leafworm. Pestic. Biochem. Physio., 212, 106462
Litwin, A., Monika, N. & Sylwia, R. (2020). Entomopathogenic fungi: Unconventional applications. Rev. Environ. Sci. Biotechnol., 19(1), 23–42
Lord, J. C. (2007). Detection of Mattesia oryzaephili (Neogregarinorida: Lipotrophidae) in grain beetle laboratory colonies with an enzyme-linked immunosorbent assay. J. Invertebr. Pathol., 94(1), 74–76. doi: 10.1016/j.jip.2006.07.004
Lykogianni, M., Bempelou, E., Karamaouna, F. & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ., 795: 148625. https:// doi. org/ 10. 1016/j. scito tenv. 2021. 148625
Magierowicz, K., Górska-Drabik, E. & Golan, K. (2020). Effects of plant extracts and essential oils on the Inc.behavior of Acrobasis advenella (Zinck.) caterpillars and females. J. Plant Dis. Prot., 127, 63–71. https://doi.org/10.1007/s41348-019-00275-z
Manchikanti, P. (2019). Bioavailability and environmental safety of nanobiopesticides. In nano-biopesticides today and future perspectives. Academic Press, 207-222. doi:10.1016/B978-0-12-815829-6.00008-5
Manfo, F. P. T., Mboe, S. A., Nantia, E. A., Ngoula, F., Telefo, P. B. & Moundipa, P. F. (2020). Evaluation of the effects of agro pesticides use on liver and kidney function in farmers from Buea. J. Toxicol., 2020:2305764. doi: 10.1155/2020/2305764
Mantzoukas, S., Kitsiou, F., Natsiopoulos, D. & Eliopoulos, P. A. (2022). Entomopathogenic Fungi: Interactions and applications. Encyclopedia, 2(2), 646-656. https://doi.org/10.3390/encyclopedia2020044
Martínez-Balerdi, M., Caballero, J., Aguirre, E., Caballero, P., & Beperet, I. (2025). Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview. Viruses, 17(7), 917. https://doi.org/10.3390/v17070917
Matos, M. P., da Silva, A. M. & El-Din, N. S. (2020). Biopesticides: An overview on the recent developments and perspectives. Bioorg. Med. Chem., 28, 115255
Matthews, S., Siddiqui, Y. & Ali, A. (2024). Unleashing the power of bio-stimulants for enhanced crop growth, productivity, and quality: A comprehensive review. J. Plant Nutr., 1–23
Matuska-Łyżwa, J., Duda, S., Nowak, D. & Kaca, W. (2024). Impact of abiotic and biotic environmental conditions on the development and infectivity of entomopathogenic nematodes in agricultural soils. Insects, 15(6), 421
Meenatchi, R. & Aditi, N. (2021). Biopesticides for pest management. Sustainable bioeconomy: pathways to sustainable development goals, 239-266. Doi: 10.1007/978-981-15-7321-7_11
Meethal Aparna, T., Siddhapara, M. R. & Kumari, S. (2025). Entomopathogenic nematode: A sustainable option for IPM. IntechOpen. doi: 10.5772/intechope n.1010919
Miastkowska, M., Michalczyk, A., Figacz, K. & Sikora, E. (2020). Nanoformulations as a modern form of biofungicide. J. Environ. Health Sci. Eng,18(1), 119-128. https://doi.org/10.1007/s40201-020-00445-4
Mohan, Sharad. (2015). Entomopathogenic nematodes and their bacterial symbionts as lethal bioagents of lepidopteran pests. 273-288. doi:10.1007/978-3-319-14499-3_13
Monroy-Borrego, A. G. & Steinmetz, N. F. (2022). Three methods for inoculation of viral vectors into plants. Front. Plant Sci., 13, 963756. doi.org/10.3389/fpls.2022.963756
Montalva, C., Rocha, L. F. N., Fernandes, É. K. K., Luz, C. & Humber, R.A. (2016). Conidiobolus macrosporus (Entomophthorales), a mosquito pathogen in Central Brazil. J Invertebr Pathol., 139, 102-108. doi: 10.1016/j.jip.2016.08.003
Mordue, A. J., Morgan, E. D. & Nisbet, A. J. (2005). Azadirachtin, a natural product in insect control. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed, Elsevier, 117–135. DOI:10.1016/B0-44-451924-6/00077-6
Muir, D. (2023). Environmental programmes pesticide policy. Department of Forestry, Fisheries and the Environment, 13, 1071. doi: 10.12688/f1000research.154392.2
Naqqash, M. N., Gökçe, A. & Bakhsh, A. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res., 115, 1363–1373. doi: 10.1007/s00436-015-4898-9
Narandzic, T., Sarac, V., Rodic, V., Vukelic, N., Lukac-Bulatovic, M., Bijelic, S. & Ljubojevic, M. (2025). Exploring the known and mapping future directions in biopesticides research: A bibliometric analysis. Horticulturae, 11(1), 97. https://doi.org/10.3390/horticulturae11010097
Nassary, E. K. (2025). Fungal biocontrol agents in the management of soil-borne pathogens, insect pests, and nematodes: Mechanisms and implications for sustainable agriculture. The Microbe., 7, 100391
Natra, N. T., Kumar, M., Apurva, K. & Thakur, V. V. (2019). Viral biopesticides: An effective and environment-friendly approach to control insects. In Biofertilizers and Biopesticides in Sustainable Agriculture, Apple Academic Press, 71-90. doi: 10.1201/9780429059384-4
Nelly, N., Syahrawati, M., Hamid, H., Habazar, T. & Gusnia, D. N. (2019). Diversity and characterization of entomopathogenic fungi from the rhizosphere of maize plants as potential biological control agents. Biodivers. J. Biol. Divers., 20, 1435–144
Ody, L. P., Santos, M. S. N., Lopes, A. M., Mazutti, M. A., Tres, M. V. & Zabot, G. L. (2025). Review on biological and biochemical pesticides as a sustainable alternative in organic agriculture. Biocatal. Agric. Biotechnol., 67, 103655.
Olivares, J., Siegwart, M., Gautier, M., Maugin, S., Gingueneau, L. & Gauffre, B. (2023). Genetic basis of codling moth (Cydia pomonella) resistance to the original isolate of C. pomonella Granulovirus (CpGV-M). Entomol. Gen., 43(3), 649-658. doi: 10.1127/entomologia/2023/2052
Parker, K. M. & Sander, M. (2017). Environmental fate of insecticidal plant-incorporated protectants from genetically modified crops: Knowledge gaps and research opportunities. Environ. Sci. Technol., 51(21), 12049–12057. https://doi.org/10.1021/acs.est.7b03456
Pathma, J., Kennedy, R. K., Bhushan, L. S., Shankar, B. K. & Thakur, K. (2021). Microbial biofertilizers and biopesticides: nature’s assets fostering sustainable agriculture. Recent developments in microbial technologies, 39-69. doi: 10.1007/978-981-15-4439-2_2
Pelosi, C., Bertrand, C., Daniele, G., Coeurdassier, M., Benoit & P., Nélieu, S. (2021). Residues of currently used pesticides in soils and earthworms: a silent threat? Agric. Ecosyst. Environ., 305, 107167. doi: 10.1016/j.agee.2020.107167
Pertile, M., Antunes, J. E. L., Araujo, F. F., Mendes, L. W., Van den Brink, P. J. & Araujo, A. S. F. (2020). Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep., 10, 1–9. doi: 10.1038/s41598-020-64648-3
Petersen, J. M., Bézier, A., Drezen, J. M. & van Oers, M. M. (2022). The naked truth: An updated review on nudiviruses and their relationship to bracoviruses and baculoviruses. J. Invertebr. Pathol., 189, 107718. https://doi.org/10.1016/j.jip.2022.107718
Prasad, V. & Srivastava, S. (2016). Insect viruses. In Ecofriendly pest management for food security Academic Press, 411-442
Prempeh, C. (2019). Process optimization and techno-economics assessment of nematode biopesticide production (Doctoral dissertation, Stellenbosch: Stellenbosch University)
Quiroga-Cubides, G., Araque-Echeverry, G., Ruíz Moreno, C., Barrera Cubillos, G. P., Gómez-Valderrama, J., Cuartas-Otálora, P. E., Gómez Álvarez, M. I. & Cortés-Rojas, D. (2022). Formulation process analysis of a virus-based biopesticide to control the tomato leafminer Tuta absoluta. Braz. Arch. Biol. Technol., 65, e22210342
Raj, M. N., Samal, I., Paschapur, A. & Subbanna, A. R. N. S. (2022). Entomopathogenic viruses and their potential role in sustainable pest management. In New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 47-72. doi:10.1016/B978-0-323-85579-2.00015-0
Rajaput J., Rao, M. S. L. & Hegde, R. V. (2019). Biopriming: a novel seed treatment options to manage the seed-borne fungal infection of tomato. J. Pharmacogn. Phytochem., 6, 659-661
Rakhimol, K., Thomas, S., Volova, T. & Jayachandran, K. (2020). Controlled release of pesticides for sustainable agriculture. New York, NY: Springer. doi: 10.1007/978-3-030-23396-9
Ramakuwela, T., Tarasco, E., Chavarría-Hernández, N. & Toepfer, S. (2025). Entomopathogenic nematodes: Commercial use and future perspectives. J. Invertebr. Pathol., 212, 108388
Ramírez-Ordorica, A., Adame-Garnica, S. G., Ramos-Aboites, H. E., Winkler, R. & Macías-Rodríguez, L. (2024). Volatile semiochemicals emitted by Beauveria bassiana modulate larval feeding behavior and food choice preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Fungi., 10(6), 438. doi.org/10.3390/jof10060438
Rauf, A. & Wilkins, R. M. (2022). Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. Pestic. Biochem. Physiol., 184, 105128. doi: 10.1016/j.pestbp.2022.105128.
Reddy, A. A.; Reddy, M. & Mathur, V. (2024). Pesticide use, regulation, and policies in Indian agriculture. Sustainability, 16, 7839. doi.org/10.3390/su16177839
Rezaei, R., Safa, L. & Damalas, C. A. (2019). Drivers of farmers’ intention to use integrated pest management: integrating theory of planned behavior and norm activation model. J. Environ. Manage., 236: 328–339. doi: 10.1016/j.jenvman.2019.01.097
Ruiu, L. (2018). Microbial biopesticides in agroecosystems. Agron. 8, 235. 8235. https://doi.org/10.3390/agronomy8110235
Sabarwal, A., Kumar, K. & Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health–cancer and other associated disorders. Environ. Toxicol. Pharmacol., 63, 103–114. doi: 10.1016/j.etap.2018.08.018
F, d’Herelle., T., Yaman, M. & Erturk, O. (2021). Distribution and occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) populations: an extensive field study. Acta Protozool., 60, 31–36. doi: 10.4467/16890027AP.21.004.14064.
Al-Rawashdeh microbiomes for sustainable agriculture: Functional annotation, 471-501. doi:10.1007/978-3-030-73507-4_15
Sansinenea, E. (2021). Application of biofertilizers: Current worldwide status. In Biofertilizers, 183–190
Santos, E. N., Menezes, L. P., Dolabella, S. S., Santini, A., Severino, P., Capasso, R., Zielinska, A., Souto, E. B. & Jain, S. (2022). Bacillus thuringiensis: From biopesticides to anticancer agents. Biochimie., 192, 83-90. doi: 10.1016/j.biochi.2021.10.003
Santos, M. S., Rodrigues, T. F., Nogueira, M. A. & Hungria, M. (2021). The challenge of combining high yields with environmentally friendly bioproducts: A review on the compatibility of pesticides with microbial inoculants. Agronomy, 11(5), 870. https://doi.org/10.3390/agronomy11050870
Sarwar, M. & Aslam, R. (2021). Usage of entomopathogenic viruses for insect pest control. in biopesticides in organic farming, CRC Press, 99-108
Satish, G., Ashokrao, D. M. & Arun, S. K. (2017). Microbial degradation of pesticide: a review. Afr. J. Microbiol. Res., 11, 992–1012. DOI:10.5897/AJMR2016.8402
Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip., 31(3), 446–459
Shamsuddeen, R., Mathew, T. S., Haladu, M., Ahmad, K. B., Adam, A. B. & Abubakar, M. Y. (2024). Recent advances in biopesticides: A review of efficacy and environmental impact. Afr. J. Biochem. Mol. Biol. Res., 1(1), 706-725. https://doi.org/10.58578/ajbmbr.v1i1.3706
Silva, F., Maria, H. N. L., Berry, C. & Regis, L. (2014). Lysinibacillus sphaericus: Toxins and mode of action, applications for mosquito control and resistance management. Dhadialla, Tarlochan S. and Gill, Sarjeet S, eds. Advances in Insect Physiology, Insect Midgut and Insecticidal Proteins, Elsevier, 47, 89-176. Doi: 10.1016/B978-0-12-800197-4.00003-8
Singh, A., Kumawat, M. M., Dangi, N. L. & Yadav, S. (2023). Role of insect pheromones in integrated pest management. J. Agric. Environ. Sci., 2(11). E-ISSN 2583-1755
Singh, G. & Paithankar, I. (2023). Encapsulation of biofertilizers, biopesticides and biocontrol agents. In Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture Cham: Springer Nature Switzerland, 121-150. DOI:10.1007/978-3-031-24181-9_6
Sinha, B. & Biswas, I. (2009). Potential of bio-pesticides in Indian agriculture vis-a-vis rural development. India Science and Technology, http://dx.doi.org/10.2139/ssrn.1472371
Soetopo, D. & Alouw, J. C. (2023). Innovation on biopesticides to support sustainable agriculture development. IOP Conference Series: Earth Environ. Sci., 1179, 012003. https://doi.org/10.1088/1755-1315/1179/1/012003
Souza, C. S. F., Silveira, L. C. P., Pitta, R. M., Waquil, J. M., Pereira, E. J. G. & Mendes, S. M. (2019). Response of field populations and Cry-resistant strains of fall armyworm to Bt maize hybrids and Bt-based bioinsecticides. Crop Prot., 120, 1-6. https://doi.org/10.1016/j.cropro.2019.01.001
Steiner, M., Falquet, L., Fragnière, A. L., Brown, A. & Bacher, S. (2024). Effects of pesticides on soil bacterial, fungal and protist communities, soil functions and grape quality in vineyards. Ecol. Solut. Evii., 5(2). https://doi.org/10.1002/2688-8319.12327
Stevenson, P. C., Isman, M. B. & Belmain, S. R. (2017). Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind. Crop. Prod., 110, 2–9. https://doi.org/10.1016/j.indcrop.2017.08.034
Strauch, O., Strasser, H., Hauschild, R. & Ehlers, R. U. (2011). Proposals for bacterial and fungal biocontrol agents. In R. U. Ehlers (Ed.), Regulation of biological control agents (pp. 267–288). Springer Netherlands
Sunjka, D. & Mechora, S. (2022). An alternative source of biopesticides and improvement in their formulation—Recent advances. Plants, 11(22), 3172
Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. (2020). The effect of pesticides on the microbiome of animals. Agriculture, 10, 1–14. doi: 10.3390/agriculture10030079
Szewczyk, B., Hoyos-Carvajal, L. & Paluszek, M., (2006). Baculoviruses—reemerging biopesticides. Biotechnol., 24, 143–160. doi: 10.1016/j.biotechadv.2005.09.001
Tadesse, M. K., Malinga, L., Muir, D Ge, J. & Ndolo, D. (2024). Recent advances in biopesticide research and development with a focus on microbials. F1000Res., 11 (13), 1071. doi: 10.12688/f1000research.154392.2
Tarasco, E., Fanelli, E., Salvemini, C., El-Khoury, Y., Troccoli, A., Vovlas, A. & De Luca, F. (2023) Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses. Front. Insect Sci., 3:1195254. doi: 10.3389/finsc.2023.1195254
Thakore, Y. (2006). The biopesticide market for global agricultural use. Ind. Biotechnol., 2(3), 194-208. doi:10.1089/ind.2006.2.194
Thakur, N., Kaur, S., Tomar, P., Thakur, S. & Yadav, A. N. (2020). Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In New and future developments in microbial biotechnology and bioengineering. Elsevier. https://doi.org/10.1016/B978-0-12-820526-6.00016-6
Thapa, A., Tamang, J. & Rai, M. (2020). Viral insecticides in sustainable agriculture: A. TTPP, 329. Doi: 10.1007/s12010-023-04765-7
Tomar, P., Thakur, N., Jhamta, S, Chowdhury, S., Kapoor, M., Singh, S., Shreaz, S., Rustagi, S., Rai, P. K., Rai, A. K. & Yadav, A.N. (2024). Bacterial biopesticides: Biodiversity, role in pest management and beneficial impact on agricultural and environmental sustainability. Heliyon, 10 (11), e31550
Tripathi, A. K., Upadhyay, S., Bhuiyan, M. & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother.,, 1, 52–63
Ujvary, I. (2001). Chapter 3—Pest control agents from natural products. In Handbook of Pesticide Toxicology, 2nd ed.; Krieger, R.I., Krieger, W.C., Eds.; Academic Press: San Diego, 109–179. https://doi.org/10.1002/047126363X.agr170
Ullah, Q., Haider, W., Waqar, M., Athiqah, M. Y. N., Maysaroh, U., Sajjad, N., Khomphet, T. & Ageru, T. A. (2025). Innovative biotechnological approaches in agriculture: From biopesticides against insect pests to flavor enhancement in crops. J. Agric. Food Res., 24, 102369
USEPA. (2024). Overview of Plant Incorporated Protectants.
Vedamurthy, A. B., Jogaiah, S. & Shruthi, S. D. (2022).Chapter 15 - Insights into the genomes of microbial biopesticides, In Advances in Bio-inoculant Science, Biopesticides, Woodhead Publishing, 225-236, https://doi.org/10.1016/B978-0-12-823355-9.00026-2
Vermelho, A. B., Moreira, J. V., Akamine, I. T., Cardoso, V. S. & Mansoldo, F. R. P. (2024). Agricultural pest management: The role of microorganisms in biopesticides and soil bioremediation. Plants, 13(19), 2762. https://doi.org/10.3390/plants13192762
Vero, S., Garmendia, G., Allori, E., Sanz, J. M., Gonda, M., Alconada, T., Cavello, I., Dib, J. R., Diaz, M. A., Nally, C., Pimenta, R. S., da Silva, J. F. M., Vargas, M., Zaccari, F. & Wisniewski, M. (2023). Microbial biopesticides: Diversity, scope, and mechanisms involved in plant disease control. Diversity, 15(3), 457. https://doi.org/10.3390/d15030457
Vimala Devi, P. S., Duraimurugan, P., Poorna Chandrika, K. S. V., Vineela, V. & Hari, P. P. (2020). Novel formulations of Bacillus thuringiensis var. kurstaki: an eco-friendly approach for management of lepidopteran pests. World J. Microbiol. Biotechnol., 36, 1-14. doi: 10.1007/s11274-020-02849-8
Vivekanandhan, P., Swathy, K. & Murugan, A. C. (2022). Insecticidal efficacy of metarhizium anisopliae derived chemical constituents against disease-vector mosquitoes. J. Fungi., 8: 300. doi: 10.3390/jof8030300
Vladimirova, D., Kunecova, D., Nascimento, M., Kim, J. Y., Kunec, D. & Trimpert, J. (2025). Engineering iridoviruses: Development of reverse genetics and virus rescue systems. J. Virol., 99(5), e01852-24
Votavova, A., Trneny, O., Stavenikova, J., Dybova, M., Brus, J. & Komzakova, O. (2022). Prevalence and distribution of three bumblebee pathogens from the Czech Republic. Insects, 13(12), 1121. doi: 10.3390/insects13121121
Wagemans, J., Holtappels, D., Vainio, E., Rabiey, M., Marzachì, C., Herrero, S., Ravanbakhsh, M., Tebbe, C. C., Ogliastro, M., Ayllón, M. A. & Turina, M. (2022). Going viral: virus-based biological control agents for plant protection. Annu. Rev. Phytopathol., 60(1), 21-42. doi: 10.1146/annurev-phyto-021621-114208
Wan, N. F., Fu, L. & Dainese, M. (2025). Pesticides have negative effects on non-target organisms. Nat. Commun. 16, 1360. https://doi.org/10.1038/s41467-025-56732-x
Wattimena, C. M. A & Latumahina, F. S. (2021). Effectiveness of botanical biopesticides with different concentrations of termite mortality. J. Belantara., 4, 66–74. Doi: 0.29303/jbl.v4i1.630
Wend, K., Zorrilla, L., Freimoser, F. M. & Gallet, A. (2024). Microbial pesticides: Challenges and future perspectives for testing and safety assessment with respect to human health. Environ. Health, 23(1), 49
Williams, T. (2023). Soil as an environmental reservoir for baculoviruses: Persistence, dispersal and role in pest control. Soil Syst., 7(1), 29. https://doi.org/10.3390/soilsystems7010029
Wilson, K., Grzywacz, D., Curcic, I., Scoates, F., Harper, K., Rice, A., Paul. N. & Dillon, A. (2020). A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Scientific Reports, 10(1), 13301.
https://doi.org/10.1038/s41598-020-70293-7
Yao, R., Zheng, X., Hu, L. & Wang, Q. (2023). Trichoderma spp. in biocontrol and biofertilization applications. J. Appl. Microbiol., 134(6), 2189-2201. doi: 10.3389/fmicb.2023
Yasin, M., Khan, A., Qayyum, M. A., Yousuf, H. M. B., Mehfooz, A. & Hunter, D. (2024) Biological control of locusts and grasshoppers: A review. J. Orthopt. Res., 33(2): 289–304. doi.org/10.3897/jor.33.114472
Yu, H., Yang, C. J., Li, N., Zhao, Y., Chen, Z. M., Yi, S. J., Li, Z. Q., Adang, M. J. & Huang, G. H. (2021). Novel strategies for the biocontrol of noctuid pests (Lepidoptera) based on improving ascovirus infectivity using Bacillus thuringiensis. Insect Sci., 28(5), 1452-1467. doi: 10.1111/1744-7917.12875
Zanchi, M. M., Marins, K. & Zamoner, A. (2023). Could pesticide exposure be implicated in the high incidence rates of depression, anxiety and suicide in farmers? A systematic review. Environ. Pollut. 15(331)121888. https://doi. org/ 10. 1016/j. envpol. 2023. 121888
Zhang, H., Yang, K., Wang, H., Liu, H., Shi, W., Kabak, I., Ji, R. & Hu, H. (2023). Molecular and biochemical changes in Locusta migratoria (Orthoptera: Acrididae) infected with Paranosema locustae. J. Insect Sci., 23(5), 1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



