Article Main

Monika Tiwari Smriti Shukla Varun Narayan Mishra Kishan Singh Rawat Sudhir Kumar Singh Kartikeya Shukla

Abstract

Urban waterlogging is a serious problem in fast urbanizing regions, exacerbated by climatic variations and poor drainage facilities. This paper situates Unmanned Aerial Vehicle (UAV) and Light Detection and Ranging (LiDAR) remote sensing methods as viable tools for assessing waterlogging in the Dwarka-Khaira corridor, New Delhi, India. Conventional terrestrial field monitoring is restricted by resource constraints and scale, whereas high-resolution aerial methods provide detailed hydrological information. UAV and LiDAR deliver excellent spatial resolution and vertical accuracy necessary for the identification of microtopographic features critical for detecting hydrological restrictions. The RMSE of the UAV-derived DEMs was highly reduced to 4.6 m through post processing, with an increased accuracy of 83.66% and was conducive for a good performance in hydrological modeling. UAV data, which had ground sample distance less than 5 cm, facilitated urban feature classification with an accuracy of 98%) and helped to mitigate spectral confusion and misclassifi cation observed from Landsat (30 m) data. High-resolution aerial data therefore minimized false-positives and enhanced network extraction quality as compared to their satellite based counterparts. But while satellite imagery is not well matched for development level analysis, it continues to offer useful potential for regional assessment of vulnerability. Combining data from both sources is consistent with evidence from similar research, in support of models based on Sustainable Development Goal resilience targets. The application of these enhanced methods ed to a 30-40% decrease in identified waterlogged areas. So, the study offers a scientific basis for urban water management policies and planning.


 

Article Details

Article Details

Keywords

Resolution, Unmanned aerial vehicle , Vulnerability, Waterlogging

References
Andriambololonaharisoamalala, R., Helmholz, P., Ivánová, I., Jones, E., Soon, S., Bulatov, D. & Song, Y. (2025). Enhancing the spatial and temporal resolution of satellite-derived land surface temperature in urban environments: A systematic literature review. Urban Climate, 60, 102345. https://doi.org/10.1016/j.uclim.2025.102345
Ariante, G. & Del Core, G. (2025). Unmanned aircraft systems (UASs): current state , emerging technologies, and future trends. Drones, 9, 59. https://doi.org/10.3390/drones9010059
Aziz, K. M. A. & Rashwan, K. S. (2022). Comparison of different resolutions of six free online DEMs with GPS elevation data on a new 6th of october city, Egypt. Arabian Journal of Geosciences, 15(20). https://doi.org/10.1007/s12517-022-10845-5
Barsi, J., Schott, J., Hook, S., Raqueno, N., Markham, B. & Radocinski, R. (2014). LANDSAT-8 Thermal infrared sensor (TIRS) Vicarious radiometric calibration. Remote Sensing, 6(11), 11607–11626. https://doi.org/10.3390/rs61111607
Candra, D. S., Phinn, S. & Scarth, P. (2019). Automated cloud and cloud-shadow masking for landsat 8 using multitemporal images in a variety of environments. Remote Sensing, 11(17), 2060. https://doi.org/10.3390/rs11172060
Chen, K., Shen, F., Zhou, J. & Wu, X. (2020). Simulation platform for SINS/GPS integrated navigation system of hypersonic vehicles based on flight mechanics. Sensors, 20(18), 5418. https://doi.org/10.3390/s20185418
Chen, X., Dong, J., Huang, L., Nanshan You, Singha, M. & Tao, F. (2023). Characterizing the 2020 summer floods in South China and effects on croplands. IScience, 107096. https://doi.org/10.1016/j.isci.2023.107096
Ding, Y., Wang, H., Liu, Y. & Lei, X. (2024). Urban waterlogging structure risk assessment and enhancement. Journal of Environmental Management, 352, 120074. https://doi.org/10.1016/j.jenvman.2024.120074
Guan, Z., Chen, Y., Zhao, Y., Zhang, S., Jin, H., Yang, L., Yan, W., Zheng, S. & Lu, P., Key laboratory of VGE of ministry of education, Jiangsu center for collaborative innovation in geographical information resource development and application, & school of geography science and geomatics engineering. (2024). STFS-urban: Spatio-temporal flood simulation model for urban areas. In Journal of Environmental Management, ( 349, p. 119289) [Research article]. https://doi.org/10.1016/j.jenvman.2023.119289
Hemati, M., Hasanlou, M., Mahdianpari, M. & Mohammadimanesh, F. (2021). A systematic review of lanDsAt data for change detection applications: 50 years of monitoring the earth. In university of Tehran, C-CORE and memorial university of newfoundland, & centre for cold ocean resources engineering, Remote Sensing 13, p. 2869). https://doi.org/10.3390/rs13152869
Jang, J.-C. & Park, K.-A., Department of science education, Seoul national university, Seoul 08826, Korea, & department of earth science education/research institute of oceanography, seoul national university, seoul 08826, Korea. (2019). High-resolution sea surface temperature retrieval from landsat 8 OLI/TIRS data at coastal regions. Remote Sens., 11(2687), 1–21. https://doi.org/10.3390/rs11222687
Joe, R. J. J., Pitchaimani, V. S., Gobinath, R. & Shyamala, G. (2025). Urban waterlogging vulnerability assess using SAR imagery and integrated terrain analysis. Discover Sustainability, 6(1). https://doi.org/10.1007/s43621-025-00843-4
Jurado, J. M., López, A., Pádua, L. & Sousa, J. J. (2022). Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. In International Journal of Applied Earth Observations and Geoinformation, ( 112, p. 102856). https://doi.org/10.1016/j.jag.2022.102856
Kaur, R. & Gupta, K. (2022). Blue-green infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City and Environment Interactions, 16, 100087. https://doi.org/10.1016/j.cacint.2022.100087
Kemarau, R. A., Sakawi, Z., Suab, S. A., Eboy, O. V., Jaafar, W. S. W. M., Maulud, K. N. A. & Nor, N. N. F. M. (2024). Global perspectives on unmanned aerial vehicles technology in social sciences: applications, innovations, and future research directions. Geocarto International, 241–3547. https://doi.org/10.1080/10106049.2024.2413547
Keshava, N. & Mustard, J. (2002). Spectral unmixing. IEEE signal processing magazine, 19(1), 44–57. https://doi.org/10.1109/79.974727
Kim, E. & Kim, S. (2022). Global navigation satellite system real-time kinematic positioning framework for precise operation of a swarm of moving vehicles. Sensors, 22(20), 7939. https://doi.org/10.3390/s22207939
Kumari, A. & Karthikeyan, S. (2023). Sentinel-2 data for land use/land cover mapping: A meta-analysis and review. SN Computer Science, 4(6). https://doi.org/10.1007/s42979-023-02214-0
Laroche-Pinel, E., Cianciola, V., Singh, K., Vivaldi, G. A. & Brillante, L. (2024). Assessing the spatial-temporal performance of machine learning in predicting grapevine water status from Landsat 8 imagery via block-out and date-out cross-validation. Agricultural Water Management, 306, 109163. https://doi.org/10.1016/j.agwat.2024.109163
Liu, N. X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in physical geography earth and environment, 32(1), 31–49. https://doi.org/10.1177/0309133308089496
Lei, Y., Treuhaft, R., Keller, M., Dos-Santos, M., Gonçalves, F. & Neumann, M. (2018). Quantification of selective logging in tropical forest with spaceborne SAR interferometry. Remote Sensing of Environment, 211, 167–183. https://doi.org/10.1016/j.rse.2018.04.009
Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K. & Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16), 3926. https://doi.org/10.3390/rs15163926
Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R. & Gioli, B. (2015). Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing, 7(3), 2971–2990. https://doi.org/10.3390/rs70302971
Mouzakidou, K., Brun, A., Cucci, D. A. & Skaloud, J. (2024). Airborne sensor fusion: Expected accuracy and behavior of a concurrent adjustment. ISPRS Open Journal of Photogrammetry and Remote Sensing, 12, 100057. https://doi.org/10.1016/j.ophoto.2023.100057
Nagel, G. W., Darby, S. E., Leyland, J. & The Authors. (2023). The use of satellite remote sensing for exploring river meander migration [Journal-article]. Earth-Science Reviews, 247, 104607. https://doi.org/10.1016/j.earscirev.2023.104607
Ngo, D., Lee, S. & Kang, B. (2020). Robust single-image haze removal using optimal transmission map and adaptive atmospheric light. Remote Sensing, 12(14), 2233. https://doi.org/10.3390/rs12142233
Ogato, G. S., Bantider, A. & Geneletti, D. (2021). Dynamics of land use and land cover changes in Huluka watershed of Oromia Regional State, Ethiopia. Environmental Systems Research, 10(1). https://doi.org/10.1186/s40068-021-00218-4
Okolie, C. J., a,b & Smit, J. L., University of cape town, & university of Lagos. (2022). A systematic review and meta-analysis of digital elevation model (DEM) fusion: preprocessing, methods and applications [Journal-article]. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 1–29. https://doi.org/10.1016/j.isprsjprs.2022.03.016
Pahari, S. & Tribhuvan University. (2023). Processing drone image using agisoft metashape and comparative analysis of different digital elevation model (DEM). In technical report [Report]. https://doi.org/10.13140/RG.2.2.16060.86405
Prajapati, G. S., Rai, P. K., Mishra, V. N., Singh, P. & Shahi, A. P. (2021). Remote sensing-based assessment of waterlogging and soil salinity: A case study from Kerala, India. Results in Geophysical Sciences, 7, 100024. https://doi.org/10.1016/j.ringps.2021.100024
Roberts, K. C., Lindsay, J. B., Berg, A. A. & Department of geography, Environment & Geomatics, The university of Guelph. (2019). An analysis of ground-point classifiers for terrestrial LiDAR [Journal-article]. Remote Sens., 11(1915). https://www.mdpi.com/journal/remotesensing
Rodriguez, D. J. C., Barresi, A. A. & Demichela, M. (2025). Multi-scale characterization of industrial infrastructure vulnerability to multiple hazards in their territories. Journal of Safety Science and Resilience. https://doi.org/10.1016/j.jnlssr.2024.11.004
Romero-Chambi, E., Villarroel-Quezada, S., Atencio, E. & Felipe Muñoz-La Rivera. (2020). Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements. In Applied Sciences 10, 4157. https://doi.org/10.3390/app10124157
Rossi, M. J. & Vervoort, R. W. (2025). Enhancing inundation mapping with geomorphological segmentation: Filling in gaps in spectral observations. The Science of the Total Environment, 997, 180180. https://doi.org/10.1016/j.scitotenv.2025.180180
Roy, S., Bose, A., Singha, N., Basak, D. & Chowdhury, I. R. (2021). Urban waterlogging risk as an undervalued environmental challenge: An Integrated MCDA-GIS based modeling approach. Environmental Challenges, 4, 100194. https://doi.org/10.1016/j.envc.2021.100194
Sar, N., Chatterjee, S. & Adhikari, M. D. (2015). Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Modeling Earth Systems and Environment, 1(4). https://doi.org/10.1007/s40808-015-0039-9
Seenipandi, K., Ramachandran, K. K., Ghadei, P., & Shekhar, S. (2021). Seasonal variability of sea surface temperature in Southern Indian coastal water using Landsat 8 OLI/TIRS images. In Remote Sensing of Ocean and Coastal Environments (pp. 277-295). Elsevier. https://doi.org/10.1016/b978-0-12-819604-5.00016-0
Shahbazi, M., Sohn, G., Théau, J. & Menard, P. (2015). Development and evaluation of a UAV-Photogrammetry system for precise 3D environmental modeling. Sensors, 15(11), 27493–27524. https://doi.org/10.3390/s151127493
Shahfahad, N., Talukdar, S., Naikoo, M. W., Rahman, A., Gagnon, A. S., Islam, A. R. M. T.& Mosavi, A. (2022). Comparative evaluation of operational land imager sensor on board landsat 8 and landsat 9 for land use land cover mapping over a heterogeneous landscape. Geocarto International, 38(1). https://doi.org/10.1080/10106049.2022.2152496
Shukla, T., Tang, W., Trettin, C. C., Chen, G., Chen, S. & Allan, C. (2023). Quantification of microtopography in natural ecosystems using close-range remote sensing. Remote Sens., 2387. https://doi.org/10.3390/rs15092387
Singh, M. K., Gupta, R. D., Snehmani, N., Bhardwaj, A. & Ganju, A. (2015). Scenario-based validation of moderate resolution DEMs freely available for complex himalayan terrain. Pure and Applied Geophysics, 173(2), 463–485. https://doi.org/10.1007/s00024-015-1119-5
Stanley, T. & Kirschbaum, D. B. (2017). A heuristic approach to global landslide susceptibility mapping. Natural Hazards, 87(1), 145–164. https://doi.org/10.1007/s11069-017-2757-y
Tesema, T. A. (2021). Impact of identical digital elevation model resolution and sources on morphometric parameters of Tena watershed, Ethiopia. Heliyon, 7(11), e08345. https://doi.org/10.1016/j.heliyon.2021.e08345
Timmer, B., Reshitnyk, L. Y., Hessing-Lewis, M., Juanes, F. & Costa, M. (2022). Comparing the use of red-edge and near-infrared wavelength ranges for detecting submerged kelp canopy. Remote Sensing, 14(9), 2241. https://doi.org/10.3390/rs14092241
Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C. & Woodcock, C. E., . . . Laboratory for atmospheres, NASA Goddard space flight center. (2022). Fifty years of Landsat science and impacts. In Remote Sensing of Environment 280, p. 113195 [Journal-article]. https://doi.org/10.1016/j.rse.2022.113195
Xing, Y., Chen, H., Liang, Q. & Ma, X. (2022). Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method. Natural Hazards, 112(3), 2313–2335. https://doi.org/10.1007/s11069-022-05267-1
Xiong, L., Li, S., Tang, G. & Josef Strobl. (2022). Geomorphometry and terrain analysis: data, methods, platforms and applications. In The Authors, Earth-Science Reviews 233, p. 104191). https://doi.org/10.1016/j.earscirev.2022.104191
Zhang, D., Quan, J., Zhang, H., Wang, F., Wang, H. & He, X. (2015). Flash flood hazard mapping: A pilot case study in Xiapu River Basin, China. Water Science and Engineering, 8(3), 195–204. https://doi.org/10.1016/j.wse.2015.05.002
Zhang, Z. & Zhu, L. (2023). A review on unmanned aerial vehicle remote sensing: platforms, sensors, data processing methods, and applications. In Pablo rodríguez-gonzálvez (Ed.), Drones (p. 398). https://doi.org/10.3390/drones7060398
Zhao, B. & Wang, L. (2024). Surface water monitoring from 1984 to 2021 based on Landsat time-series images and Google Earth Engine. Heliyon, 10(17), e36660. https://doi.org/10.1016/j.heliyon.2024.e36660
Section
Research Articles

How to Cite

Bridging the skies and space: A comparative analysis of satellite and aerial data for urban waterlogging assessment – A case study of  Sector 28 corridor between Dwarka and Khaira, New Delhi, India. (2025). Journal of Applied and Natural Science, 17(4), 1837-1855. https://doi.org/10.31018/jans.v17i4.6972