Article Main

Hawraa Kadhim Abdul-hussein Munther Abduljaleel Muhammad-Ali

Abstract

Synthetic dyes are widely used in textiles, paper, plastic, and other industries, which are toxic and harmful to the environment and humans. Adsorption is an efficient method to control wastewater. Cellulose is an abundant, renewable, and eco-friendly polymer produced by plants and trees. This study examined the possibility of using extracted free cellulose from corrugated cardboard (CC), cellulose composite with AgNPs of Myrtus communis L. extract (CAgM) and cellulose composite with AgNPs of banana peel extract (CAgB) for the removal of the cationic dyes, Safranine-T (ST), from aqueous solutions. The scope of this research included the characterization of sorbents using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), Gas Chromatography–Mass Spectrometry (GC-MS), Ultraviolet–Visible Spectroscopy, determination of time contact, adsorbent mass, pH and temperature effect on the effectiveness of dye sorption using 50 mL of solution. The use of waste paper materials as sorbents was found not to pose any severe risk of aquatic environment contamination. Safranine-T (ST) sorption intensities were the highest at pH 8 and pH 10. The waste paper sorbents proved particularly effective in removing cationic dyes, like in the case of CC and CAgM, which had a sorption capacity that reached 89.16% and 84.22 %, respectively, and 84.04% towards CAgM. An adsorption isotherm study showed that the best equation used to describe the adsorption system is the Freundlich equation, with excellent correlation R2 > 0.9707.


 

Article Details

Article Details

Keywords

Adsorption isotherm, banana peel , Cellulose , Corrugated cardboard, Silver nanoparticle, Safranine-t dye

References
Abu-Elghait, M., Hasanin, M., Hashem, A. H. & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040
Ahankari, S., George, T., Subhedar, A. & Kar, K. K. (2020). Nanocellulose as a sustainable material for water purification. SPE Polymers, 1(2), 69–80. https://doi.org/10.1002/pls2.10019
Ahmad, M., Ahmed, E., Hong, Z., Khalid, N., Ahmed, W. & Elhissi, A. (2013). Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. Journal of Alloys and Compounds, 577, 717–727. https://doi.org/10.1016/j.jallcom.2013.06.137
Alasadi, S. F., Muhammad-Ali, M. A. & Al-knaany, S. A. (2024). Using of calendula officinalis L. Plant extracts in removing some heavy metals from polluted water. Egyptian Journal of Aquatic Biology & Fisheries, 28(6). http://doi.org/10.21608/ejabf.2024.391035
Alfarraj, N. S., Tarroum, M., Al-Qurainy, F., Nadeem, M., Khan, S., Salih, A. M., ... & Perveen, K. (2023). Biosynthesis of silver nanoparticles and exploring their potential of reducing the contamination of the in vitro culture media and inducing the callus growth of rumex nervosus explants. Molecules, 28(9), 3666. https://doi.org/10.3390/molecules28093666
Baig, N., Ihsanullah, N., Sajid, M. & Saleh, T. A. (2019). Graphene-based adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 244, 370–382. https://doi.org/10.1016/j.jenvman.2019.05.047
Bayuo, J., Rwiza, M. J., Mtei, K. M. & Choi, J. W. (2024). Adsorptive removal of heavy metals from wastewater using low-cost adsorbents derived from agro-based materials. In Earth and Environmental Sciences Library, (pp. 237–271). https://doi.org/10.1007/978-3-031-53688-5_11
Chen, J., Wang, J., Zhang, X. & Jin, Y. (2007). Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Materials Chemistry and Physics, 108(2–3), 421–424. https://doi.org/10.1016/j.matchemphys.2007.10.019
Chu, K. H. (2021). Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms. Industrial & Engineering Chemistry Research, 60(35), 13140-13147. https://doi.org/10.1021/acs.iecr.1c01788
Daish, M. K., Muhammad-Ali, M. A.& Al-Asadi, W. M. T. (2024, July). Green synthesis of nanoparticles using aqueous leaves extract of capparis spinosa L. and evaluation of their resistance to salt stress of some aquatic plants. In IOP Conference Series: Earth and Environmental Science, ( 1371, 2, p. 022003). IOP Publishing. http://doi.org/10.1088/1755-1315/1371/2/022003
Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. (2023). A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 6, 101108. https://doi.org/10.1016/j.rechem.2023.101108
Fernandez, A., Picouet, P. & Lloret, E. (2010). Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Journal of Food Protection, 73(12), 2263–2269. https://doi.org/10.4315/0362-028x-73.12.2263
Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.‏ https://doi.org/10.1016/j.cej.2009.09.013
Hu, Z., Chen, H., Ji, F. & Yuan, S. (2010). Removal of congo red from aqueous solution by cattail root. Journal of Hazardous Materials, 173(1-3), 292-297.‏ https://doi.org/10.1016/j.jhazmat.2009.08.082
Islam, M. T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K. & Noveron, J. C. (2018a). Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 6(4), 3827–3836. https://doi.org/10.1016/j.jece.2018.05.032
Islam, M. T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K. & Noveron, J. C. (2018b). Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 6(4), 3827–3836. https://doi.org/10.1016/j.jece.2018.05.032
Jasim, E. Q., Muhammad-Ali, M. A. & Al-Abdullah, A. A. (2024). In vitro studies of biosynthesized nanoparticles of dysphania aqueous leaves extract against some isolated bacteria from wounds and burns and in silico evaluations of compounds identified in its GC-MS Spectra. Tropical Journal of Natural Product Research, 8(11). https://doi.org/10.26538/tjnpr/v8i11.26
Jóźwiak, T., Filipkowska, U., Bednarowicz, A., Zielińska, D. & Wiśniewska-Wrona, M. (2024). The use of various types of waste paper for the removal of anionic and cationic dyes from aqueous solutions. Molecules, 29(12), 2809. https://doi.org/10.3390/molecules29122809
Kara, H. T., Anshebo, S. T., Sabir, F. K. & Workineh, G. A. (2021). Removal of methylene blue dye from wastewater using periodiated modified nanocellulose. International Journal of Chemical Engineering, 2021, 1–16. https://doi.org/10.1155/2021/9965452
Mahajan, T., Paikaray, S. & Mahajan, P. (2023, October). Applicability of the equilibrium adsorption isotherms and the statistical tools on to them: a case study for the adsorption of fluoride onto Mg-Fe-CO3 LDH. In Journal of Physics: Conference Series, (2603, No. 1, p. 012056). IOP Publishing. https://doi.org/10.1088/1742-6596/2603/1/012056
Mishra, K., Siwal, S. S., Sithole, T., Singh, N., Hart, P. & Thakur, V. K. (2024). Biorenewable materials for water remediation: the central role of cellulose in achieving sustainability. Journal of Bioresources and Bioproducts, 9(3), 253-282. https://doi.org/10.1016/j.jobab.2023.12.002
Nadagouda, M. N. & Varma, R. S. (2007). Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules, 8(9), 2762–2767. https://doi.org/10.1021/bm700446p
Padilla, J. E., Melendez, J., Barrera, L. A., Wu, Y., Ventura, K., Veleta, J. M., Islam, M. T., Chavez, C. A., Katla, S. K., Villagrán, D.& Noveron, J. C. (2017). High dispersions of carbon nanotubes on cotton-cellulose benzoate fibers with enhanced electrochemical generation of reactive oxygen species in water. Journal of Environmental Chemical Engineering, 6(1), 1027–1032. https://doi.org/10.1016/j.jece.2017.12.002
Rasli, S. R. (2017). Extraction and characterization of cellulose from agricultural residue - oil palm fronds. Malaysian Journal of Analytical Sciences, 1065-1073. https://doi.org/10.17576/mjas-2017-2105-08
Ritter, M. T., Lobo-Recio, M. A., Padilla, I., Nagel-Hassemer, M. E., Romero, M. & López-Delgado, A. (2024). Adsorption of safranine-T dye using a waste-based zeolite: Optimization, kinetic and isothermal study. Journal of Industrial and Engineering Chemistry, 136, 177-187. https://doi.org/10.1016/j.jiec.2024.0 2.005
Saha, S., Shukla, S. K., Singh, H. R., Pradhan, K. K. & Jha, S. K. (2020). Production and purification of bioflocculants from newly isolated bacterial species: a comparative decolourization study of cationic and anionic textile dyes. Environmental Technology, 42(23), 3663–3674. https://doi.org/10.1080/09593330.2020.1737737
Salman, H. H., Ali, M. A. M. & Ali, E. T. (2020). Synthesis and screening of anticancer potentials of some new terephthaldehyde-derived nitrone compounds. Tropical Journal of Pharmaceutical Research, 19(2), 341-349. https://doi.org/10.4314/tjpr.v19i2.17
Sedighi, A., Montazer, M. & Samadi, N. (2014). Synthesis of nano Cu2O on cotton: Morphological, physical, biological and optical sensing characterizations. Carbohydrate Polymers, 110, 489–498. https://doi.org/10.1016/j.carbpol.2014.04.030
Sivaranjanee, R., Kumar, P. S. & Mahalaxmi, S. (2022). A review on agro-based materials on the separation of environmental pollutants from water system. Chemical Engineering Research and Design, 181, 423-457. https://doi.org/10.1016/j.cherd.2022.04.002
Štular, D., Savio, E., Simončič, B., Šobak, M., Jerman, I., Poljanšek, I., ... & Tomšič, B. (2021). Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix mediated by sumac leaf extract. Applied Surface Science, 563, 150361. https://doi.org/10.1016/j.apsusc.2021.150361
Suleman, M., Zafar, M., Ahmed, A., Rashid, M. U., Hussain, S., Razzaq, A., Mohidem, N. A., Fazal, T., Haider, B. & Park, Y. (2021). Castor leaves-based biochar for adsorption of safranin from textile wastewater. Sustainability, 13(12), 6926. https://doi.org/10.3390/su13126926
Tomar, R. S. & Preet, S. (2017). Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. Journal of Helminthology, 91(4), 454-461.‏ https://doi.org/10.1017/S0022149X16000444
Vigdorowitsch, M., Pchelintsev, A., Tsygankova, L. & Tanygina, E. (2021). Freundlich isotherm: An adsorption model complete framework. Applied Sciences, 11(17), 8078. https://doi.org/10.3390/app11178078
Walawska, A., Olak-Kucharczyk, M., Kaczmarek, A. & Kudzin, M. H. (2024). Environmentally friendly bleaching process of the cellulose fibres materials using ozone and hydrogen peroxide in the gas phase. Materials, 17(6), 1355.
Yaqoob, G. B. (2022). Adsorption of some heavy elements on surface of activated carbonized cellulose from aqueous solution. Journal of Petroleum Research and Studies, 12(2), 110-122. http://doi.org/10.52716/jprs.v12i2.661
Section
Research Articles

How to Cite

Adsorption capacity study of isolated cellulose and its nanocomposite for Safranine T dye in aqueous solutions. (2025). Journal of Applied and Natural Science, 17(4), 1674-1685. https://doi.org/10.31018/jans.v17i4.6944