A report on rubratoxin production by a novel strain of Talaromyces viridis isolated from contaminated chick pea (Cicer arietinum) samples
Article Main
Abstract
Mycotoxins are low-molecular-weight poisonous (toxic) secondary metabolites produced by Ascomycetous fungi. Contamination of food by mycotoxins is a global issue that poses a significant challenge to food safety. The present investigation primarily focused on isolating, screening, and identifying fungal contaminants in chickpea samples. Additionally, qualitative analysis and identification of the purified mycotoxin were performed using High-Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared (FTIR) spectroscopy techniques. Samples of chickpeas were used to isolate and identify the fungi that produce mycotoxin. Morphological characterization indicated the presence of Penicillium in Chickpea. Subsequently, molecular characterization using the 18S RNA sequencing method confirmed the presence of Talaromyces viridis. The contaminated samples and pure fungal cultures were used to extract mycotoxins. Both the contaminated food sample and crude mycotoxin extract were analyzed by HPLC and FTIR to confirm the presence of Rubratoxin. The presence of rubratoxin in chickpea has not been reported till now. The present study is the first of its kind to report the isolation of Talaromyces viridis from contaminated chickpea samples and to identify it as a producer of rubratoxin, to the best of our knowledge. However, further research is needed to undertake quantitative analysis and assess the effects of these specific mycotoxins on human health.
Article Details
Article Details
Food contaminant, Fourier Transform Infrared, High Performance Liquid Chromatography (HPLC), Mycotoxin, Rubratoxin, Talaromyces viridis
Agriopoulou, S., Stamatelopoulou, E. & Varzakas, T (2020). Advances in analysis and detection of major mycotoxins in foods. Foods, 9(4), 518.
Ahmad, S.K. & Singh, P.L. (1991). Mycofloral changes and aflatoxin contamination in stored chickpea seeds. Food Addit. Contam., 8, 723-730.
Alemayehu, S., Abera, F.A., Ayimut, K.M., Harvey, J., Mahroof, R., Subramanyam, B. & Ulmer, J. (2023). Fungal infection and mycotoxins contamination on farm-stored chickpea in major producing districts of Ethiopia. Journal of Biomedical Research and Environmental Sciences, 4(3), 413-425. doi: 10.37871/jbres1690
Altyn, I. & Twarużek, M. (2020). Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins,12(3),182.
Benkerroum, N. (2020). Chronic and acute toxicities of aflatoxins mechanisms of Action. Int. J. Environ. Res. Public Health, 17(2), 423.
Bennett, J. W.& Klich, M. (2003). Mycotoxins. Clin. Microbiol. Rev., 16, 497.
Bhat, R. (2013). Potential use of fourier transform infrared spectroscopy for identification of molds capable of producing Mycotoxins. International Journal of Food Properties, 16 (8), 1819–1829. https://doi.org/10.1080/10942912.2011.609629
Boonzaaijer, G., van Osenbruggen, W., Kleinnijenhuis, A.& van Dongen, W. (2008). An exploratory investigation of several mycotoxins and their natural occurrence in flavour ingredients and spices, using a multi-mycotoxin LC-MS/MS method. World Mycotoxin J., 1 (2), 167–174.
Caldeirao, L., Sousa, J., Nunes, L. C., Godoy, H. T., Fernandes, J. O.& Cunha, S. C. (2021). Herbs and herbal infusions: Determination of natural contaminants (mycotoxins and trace elements) and evaluation of their exposure. Food Res. Int., 144, 110322.
Carballo, D., Fernández-Franzón, M., Ferrer, E., Pallarés, N.& Berrada, H. (2021). Dietary exposure to mycotoxins through alcoholic and non-alcoholic beverages in Valencia, Spain. Toxins, 13 (7), 438.
Chandralekha, T., Abinaya, S., Rathour, A., Mahalakshmi, A. & Chinnerikuppam, H. (2020). Detection of aflatoxin in food products using UV fluorescence Spectroscopy. International Journal of Innovative Technology and Exploring Engineering., 9 (5), 1068-1071.
Chen, L., Guo, W., Zheng, Y., Zhou, J., Liu, T., Chen, W., Liang, D., Zhao, M., Zhu, Y., Wu, Q. & Zhang. J. (2020). Occurrence and characterization of fungi and mycotoxins in contaminated medicinal herbs. Toxins., 12(1), 30.
Darab,Y., Ahmad, M., Abidin, Z., How, T.Y. & Kamaruzaman, S. (2010). Evaluation of the detection techniques of toxigenic Aspergillus isolates. African Journal of Biotechnology., 9 (45),7654-7659.
Dey, D.K., Kang, J.I,, Bajpai, V.K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y.S., Han, Y.K. & Shukla, S. (2023). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Cri.t Rev. Food Sci. Nutr., 63(27), 8489-8510. doi: 10.1080/10408398.2 022.2059650.
Eskola, M., Kos, G., Elliott, C.T., Hajlová, J., Mayar, S. & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr., 60, 2773–2789.
FAO (2014). FAOSTAT. Food and agriculture organization of the united nations, rome, Italy.
Frisvad, J.C. & Thrane, U. (1987). Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and Uv- Vis spectra (Diode Array Detection). Journal of Chromatography, 404, 195-214.
Frisvad, J.C., Yilmaz, N., Thrane, U., Rasmussen, K.B., Houbraken, J. & Samson, R.A. (2013). Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One, 8(12), e84102. 10.1371/journal.pone.0084102.
Hayes, A.W. & McCain, H.W. (1975). A procedure for the extraction and estimation of rubratoxin B from corn. Food Cosmet. Toxicol., 13(2), 221-9. 10.1016/s00156264(75)80007-1.
Hayes, A.W. & Wilson, B.J. (1968). Bioproduction and purification of Rubratoxin B. Applied Microbiology, 16(8), 1163-1167.
Hossain, M. N., Talukder, A., Afroze, F., Rahim, M. M., Begum, S., Haque, M. Z.& Ahmed, M. M. (2018). Identification of aflatoxigenic fungi and detection of their Aflatoxin in red chilli (Capsicum annuum) samples using direct cultural method and HPLC. Advances in Microbiology, 8(1), Article 1. https://doi.org/10.4236/aim.2018.81004
Hove, M., De Boevre, M., Lachat, C., Jacxsens, L., Nyanga, L.K. & De Saeger, S. (2016). Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control., 69, 36-44.
Kong, K., Yan, Z., Liu, M. et al. (2025). Diversity, antibacterial and phytotoxic activities of intestinal fungi from Epitheca bimaculata. BMC Microbiol., 25, 249. https://doi.org/10.1186/s12866-025-03756-4
Koteswara Rao, V., Girisham, S.& Madhusudhan Reddy, S. (2014). Influence of different species of Penicillium and their culture filtrates on seed germination and seedling growth of Sorghum. J. Biochem. Tech., 5(4), 832-837
Koteswara Rao, V., Girisham, S.& Madhusudhan Reddy, S. (2016). Prevalence of toxigenic Penicillium species associated with poultry house in Telangana, India. Archives of Environmental & Occupational Health, 71(6), 353–361. https://doi.org/10.1080/19338244.20 16.1140627.
Kumar, S. & Suresh, D. (2019). Isolation, Identification and detection of Aflatoxin from date palm (Phoenix dactylifera L.). International Journal of Pharma and Bio Sciences, 10(3),158–164.
Kutama, A.S., Muhammad, A., Sani, M.D.& Mai –Abba, I. A. (2022). Isolation and identification of aflatoxin producing fungi from different foodstuffs at Shuwarin Market, Jigawa State, Nigeria. Dutse Journal of Pure and Applied Sciences, 8(1b), 9-15.
Lee, H.S., Nguyen-Viet, H., Lindahl, J., Thanh, H.M., Khanh, T.N., Hien, L.T.T. & Grace, D. (2017). A survey of aflatoxin B1 in maize and awareness of aflatoxins in Vietnam World. Mycotoxin Journal, 10 (2), 195-202.
Lee, S., Kim, G. & Moon, J. (2013). Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors, 13(4), 5109-16.
Li, Y., Zhang, X., Nie, J., Bacha, S.A.S., Yan, Z. & Gao, G. (2020). Occurrence and co-occurrence of mycotoxins in apple and apple products from China. Food Control, 118,107354.
Liew, W.P & M.R. Sabran (2022). Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. J. Food Drug Anal., 30(4), 549-561.
Maria, L. F., Marcia, L. M. & José, L. T. (2010). Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. Journal of Advanced Research, 1 (2), 113-122.
Marin, S., Ramos, A.J., Cano-Sancho, G. & Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology., 60, 218–237.
Moss, M. O. (1971). Fungal Toxins, Ciegler, A., Kadis, S., Ajl, S. J., Ed., Academic, New York, N.Y., p 381.
Moss, M.O. & Hill, I.W. (1970). Mycopath. Strain variation in the production of rubratoxins by Penicillium rubrum Stoll. Mycol. Appl., 40,81.
Myrestiotis, C.K., Testempasis, S., Vryzas, Z., Karaoglanidis, G.S.& Papadopoulou-Mourkidou, E. (2015). Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. Food Chem., 182, 81–88.
Nguyen, T. T. T., Frisvad, J. C., Kirk, P. M., Lim, H. J.& Lee, H. B. (2021). Discovery and Extrolite Production of Three New Species of Talaromyces Belonging to Sections Helici and Purpurei from freshwater in Korea. Journal of Fungi, 7(9), 722. https://doi.org/10.3390/jof7090722
Omar, S. S. (2016). Aflatoxin M1 levels in raw Milk, pasteurized milk and infant formula. Ital. J. Food Saf., 5(3), 5788.
Omotayo, O.P., Omotayo, A.O., Mwanza, M. & Babalola, O.O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicol. Res., 35(1):1-7.
Pereira, V. L., Fernandes, J.O. & Cunha, S.C. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science and Technology, 36(2), 96–136.
Pickova, D., Ostry, V., Toman, J. & Malir, F. (2021). Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins., 13(6), 399.
Pohland, A. E. & Allen, R. (1970). Analysis and chemical confirmation of patulin in grains. Journal of Association of Official Analytical Chemists, 53 (4), 686–687.
Pons, W. A. Jr., Cucullu, A. F. & Lee, L. S. (1971). Proceedings of Third International Congress of Food Science and Technology, Washington, D. c., 1970.,. p.705
Quaglia, M., Tini, F., Bajrami, E., Quadrini, E., Fedeli, M., Sulyok, M., Beccari, G. & Covarelli, L. (2025). Occurrence of Aspergillus and Penicillium species, accumulation of fungal secondary metabolites, and qPCR detection of potential aflatoxigenic Aspergillus species in Chickpea (Cicer arietinum L.) seeds from different farming systems. Foods,14(15):2610. 10.3390/foods14152610.
Rajarajan, P., Sylvia, K., Pandian, M.P. & Subramanian, M. (2021). Detection of aflatoxin producing Aspergillus flavus from animal feed in Karnataka, India. Environmental Analysis Health and Toxicology, 36(3), e2021017.
Ramirez, M.L., Cendoya, E., Nichea, M.J., Zachetti, V.G.L & Chulze, S.N. (2018). Impact of toxigenic fungi and mycotoxins in Chickpea: A review. Current Opinion in Food Science, 23, 32-37.
Ren, X.T., Li, S., Ruan, Y. & Wang, L. (2024). Three new species of Talaromyces sect. Talaromyces discovered in China. Peer J., 12, e18253 10.7717/peerj.18253
Richard, J. L (2007). Some major mycotoxins and their mycotoxicoses-an overview. Int. J. Food Microbiol., 119(1-2), 3-10
Rocha, A.R., Cardoso, M.S., Júnior, J.A.S., Júnior, E.A.G., Maciel, L. F. & Menezes-Filho, J.A. (2023). Occurrence of aflatoxins B1, B2, G1, and G2 in beers produced in Brazil and their carcinogenic risk evaluation. Food Control, 145, 109348.
Ruan, H., Lu, Q., Wu, J., Qin, J., Sui, M., Sun, X., Shi, Y., Luo, J. & Yang, M. (2022). Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit. Rev. Food Sci. Nutr., 62(9), 2281-2308.
Sadhasivam, S., Barda, O., Zakin, V., Reifen, R. & Sionov, E. (2021). Rapid detection and quantification of patulin and citrinin contamination in fruits. Molecules, 26, 4545. https://doi.org/10.3390/molecules26154545
Salisu, B., Anua, S.M., Rosli, W.I.W. & Mazlan N. (2022). An improved Fourier-Transform Infrared Spectroscopy combined with partial least squares regression for rapid quantification of total aflatoxins in commercial chicken feeds and food grains. J. Adv. Vet. Anim. Res., 9(3), 546-564. doi: 10.5455/javar. 2022.i624.
Scott, P.M. & Hand, T.B. (1967) A method for the detection and estimation of ochratoxin A in some cereal products. J. Assoc. Off. Anal. Chem., 50,366–370
Setlem, S.K & Ramlal, S. (2016). Isolation, Extraction and Identification of Aflatoxin Producing Aspergillus Fungi by HPLC Analysis and ITS Sequencing. Clin. Case Rep. Int., 6, 1393.
Shekhar, M., Singh, N., Dutta, R., Kumar, S. & Mahajan, V. (2017). Comparative study of qualitative and quantitative methods to determine toxicity level of Aspergillus flavus isolates in maize. PLoS ONE, 12(12), e0189760.
Tania, A., Akram, A., Hanif, N.Q., Ajmal, M., Seerat, W., Nijabat, A. & Mehak, A. (2023). Proximate composition, fungal isolation and contamination of aflatoxin B1 in
chickpea seeds from the Punjab, Pakistan. Nat. Prod. Res., 37(19), 3314-3322. doi: 10.1080/14786419.20 22.2065674.
Theumer, M.G., Henneb, Y., Khoury, L., Snini, S.P., Tadrist, S., Canlet C., Puel, O, Oswald, I.P. & Audebert, M. (2018). Genotoxicity of aflatoxins and their precursors in human cells. Toxicol. Lett., 1, 287, 100-107
Tola, M. & Kebede, B. (2016). Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture, 2(1), 1191103.
Unger, P.D & Hayes, W. (1978). High-pressure liquid chromatography of the Mycotoxins, Rubratoxins A and B,andits application to the analysis of urine and plasma for Rubratoxin B. Journal of Chromatography, 153, 113-126.
Wang, Y., Wang, B., Wang, P., Hua, Z., Zhang, S., Wang, X., Yang, X. & Zhang, C. (2024). Review of neurotoxicity of T-2 toxin. Mycotoxin Res., 40(1), 85-95. doi: 10.1007/s12550-024-00518-5.
Wang, B., Nong, XH., Zeng, WN. et al. (2022). Study on bioactive secondary metabolites from the Mangrove-Derived fungus Penicillium verruculosum TGM14. Chem. Nat. Compd., 58, 812–815 https://doi.org/10.1007/s10600-022-03804-9
Warude, S.N., Mane, S.S. & Giri, G.K. (2016). Detection of seed borne mycoflora associated with chickpea. Int. J. Pure Appl. Biosci., 4:309-315.
Watanabe, T. (2018). Pictorial Atlas of Soilborne Fungal Plant Pathogens and Diseases. CRC Press.
Weidemann, D. K., Weaver, V. M. & Fadrowski, J. J. (2016). Toxic environmental exposures and kidney health in children. Pediatr. Nephrol., 31, 2043–2054.
Whidden, M.P., Davis, N.D. & Diener, U.L. (1980). Detection of rubratoxin B and seven other mycotoxins in corn. J. Agric. Food Chem., 28, 4, 784–786
Wokorach, G., Landschoot, S., Anena, J., Audenaert, K., Echodu, R. & Haesaert, G. (2021). Mycotoxin profile of staple grains in northern Uganda: Understanding the level of human exposure and potential risks. Food Control, 122, 107813
Yilmaz, N., Houbraken, J. Hoekstra, E.S., Frisvad, J.C., Visagie, C.M. & Samson, R.A. (2012). Delimitation and characterization of Talaromyces purpurogenus and related species. Persoonia, 29, 39-54.
Yilmaz, N., Visagie, C.M., Houbraken, J., Frisvad, J.C. & Samson, R.A. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78, 175–341.
Younis, M.R., Wang, C., Younis, M.A. & Xia, X.H. (2020). Use of biosensors for mycotoxins analysis in food stuff. Nanobiosensors: From design to applications, 171-201
Zhang, X., Li., Wang, H., Gu, X., Zheng, X., Wang, Y., Diao, J., Peng, Y. & Zhang, H. (2016). Screening and identification of novel Ochratoxin A producing fungi from grapes. Toxins, 8, 333.
Zhang, Z.K., Wang, X.C., Zhuang, W.Y., Cheng, X.H. & Zhao, P. (2021). New species of Talaromyces (Fungi) isolated from soil in Southwestern China. Biology, 10, 745. https://doi.org/10.3390/biology10080745
Zhao, Z., Yang, X., Zhao, X., Chen, L., Bai, B., Zhou, C. & Wang J. (2018). Method development and validation for the analysis of emerging and traditional fusarium mycotoxins in Pepper, Potato, Tomato, and Cucumber by UPLC-MS/MS. Food Anal. Methods., 11, 1780–1788.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



