Influence of zinc oxide nanoparticles on bioethanol production from hydrolysate of defatted Neodesmus pupukensis DMA5 biomass under optimized fermentation conditions
Article Main
Abstract
Bioethanol, a sustainable fossil fuel alternative, is produced by microbial fermentation of carbohydrate-rich biomass, requiring cost-effective production strategies. This study investigates a comprehensive approach to sustainable bioethanol production by utilizing the defatted biomass (DB) of the double mutant green alga Neodesmus pupukensis DMA5 (Accession number-PQ084675.1), isolated from the ancient temple pond, and cultivated in ultrasonically pretreated municipal wastewater, as a renewable feedstock. Microwave-assisted alkaline pretreatment (MAAPT) enhanced carbohydrate recovery from the DB, with 500 W identified as the optimal power level, yielding 37.47 ± 0.21% (w/w) total carbohydrates-over twice that of the untreated control. Sugar profiling of the hydrolysate showed glucose as the major component (76.11%), followed by xylose, rhamnose, and fucose, confirming efficient disruption of cellulose and hemicellulose. The resulting hydrolysate served as a substrate for bioethanol production using immobilized Saccharomyces cerevisiae NITTS1(Accession Number-MG255132.1). Process parameters including pH, temperature, agitation speed, and fermentation time were optimized via Response Surface Methodology (RSM) using Central Composite Design (CCD). The highest ethanol yield (193.09 mgg-1DB) was achieved at pH 5.0, 35 °C, 150 rpm, and 48 h. Supplementation with zinc oxide (ZnO) nanoparticles (NPs) further enhanced ethanol production, with 150 mg L-1 ZnO NPs yielding 198.34 ± 0.11 mg g-1 DB, attributed to zinc’s role as a metabolic cofactor in S. cerevisiae. Higher ZnO NPs concentrations, however, were inhibitory due to potential oxidative stress. This study demonstrates that the synergistic integration of MAAPT, optimized fermentation, and nanoparticle supplementation provides an effective strategy for maximizing bioethanol production from DB, thereby advancing economically viable and eco-friendly biofuel technologies.
Article Details
Article Details
Bioethanol, Microwave-assisted pretreatment, Neodesmus pupukensis, Saccharomyces cerevisiae, Zinc oxide
Attia, Y.A., Abdelsalam, E.M., Saeed, S., Saleh, M.M., & Samer, M. (2022). Bioethanol production from potato peels using Saccharomyces cerevisiae treated with ZnO and ZnO/g-C3N4 nanomaterials. Egyptian Journal of Chemistry, 65(131), 309–315.
10.21608/ejchem.2022.118978.5351
Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification.
Canadian Journal of Biochemistry and Physiology, 37, 911–917.
10.1139/o59-099
Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P., & Suri, S. (2021).5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: Recent developments. Toxin Reviews, 40(4), 545–561. 10.1080/15569543.2020.1754014
Chu, S.P., 1942. The influence of the mineral composition of the medium on the growth of planktonic algae. Part I. Methods and culture media. The Journal of Ecology, 30(2):284–325. 10.2307/2256574
Dhandayuthapani, K., Kumar, P.S., Chia, W.Y., Chew, K.W., Karthik, V., Selvarangaraj, H., Selvakumar, P., Sivashanmugam, P., & Show, P.L. (2022). Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy, 244, 122604.10.1016/j.energy.20 21.122604
Dhandayuthapani, K., Sarumathi, V., Selvakumar, P., Temesgen, T., Asaithambi, P., & Sivashanmugam, P. (2021). Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of Chlorella sorokiniana NITTS3.Chemical Data Collections, 31, 100641.10.1016/j.cdc.2020.100641
Fetyan, N.A., El-Sayed, A.E.K.B., Ibrahim, F.M., Attia, Y.A., & Sadik, M.W. (2022). Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. Environmental Science and Pollution Research, 29(2), 2588–2597.10.1007/s11356-021-15794-4
Hedge, J.E., & Hofreiter, B.T. (1962). Determination of reducing sugars and carbohydrates. I. Analysis and preparation of sugars. In: Methods in carbohydrate chemistry, (Eds.,) Whistler, R.L. and BeMiller, J.N., Academic Press, New York.
Hernandez, D., Riaño, B., Coca, M., & García-González, M.C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pretreatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.10.1016/j.cej.2014.10.049
International Energy Agency (IEA) India energy outlook 2021 [Online]. World energy outlook special report 2021. https://www.iea.org/reports/india-energyoutlook- 2021. [Accessed 19 May 2024].
Jin, W., Hu, J., Li, K., Huang, J., Shi, C., An, L., & Liu, Y. (2024). Mass transfer and diffusion mechanisms of hemicellulose from microwave expansion pretreated sugarcane bagasse. Biomass Conversion and Biorefinery, pp.1-11. 10.1007/s13399-024-05645-8
Kossatz, H. L., Rose, S. H., Viljoen-Bloom, M., & van Zyl, W. H. (2017). Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochemistry, 53, 10–16. /10.1016/j.procbio.2016.11.023
Kumar, M., Sun, Y., Rathour, R., Pandey, A., Thakur, I. S., & Tsang, D. C. (2020). Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 716, 137116. 10.1016/j.scitotenv.2020.137116
Kurek, M. A., Wojtasik-Kalinowska, I., Marcinkowska-Lesiak, M., Onopiuk, A., Szpicer, A., Kultys, E., & Zalewska, M. (2024). Effect of microwaves on food carbohydrates. In: Microwave processing of foods: Challenges, advances and prospects: Microwaves and food (pp. 221–249). Springer International Publishing. 10.1007/978-3-031-51613-2_10
Leng, X., Hsu, K. N., Austic, R. E., & Lei, X. G. (2014). Effect of dietary defatted diatom biomass on egg production and quality of laying hens. Journal of Animal Science and Biotechnology, 5, 3. 10.1186/2049-1891-5-3
Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642. 10.1007/s00253-005-0228-1
Lozano Perez, A. S., Lozada Castro, J. J., & Guerrero Fajardo, C. A. (2024). Application of microwave energy to biomass: A comprehensive review of microwave-assisted technologies, optimization parameters, and the strengths and weaknesses. Journal of Manufacturing and Materials Processing, 8(3), 121. 10.3390/jmmp8030121
Matsakas, L., & Christakopoulos, P. (2015). Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability, 7(2), 1446–1458. 10.3390/su7021446
Narmatha, R., Dhandayuthapani, K., Kumar, R. R., & Shanthi, K. (2024). Bioethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of municipal wastewater grown mutant Tetradesmus dimorphus EMS2. Journal of Applied Biological Sciences, 18(1), 1–13. 10.5281/zenodo.10614059
Prasad, S. & Ingle, A.P. (2023). The emerging role of nanotechnology in ethanol production. In: Nanotechnology for Biorefinery (pp. 235-256). Elsevier. 10.1016/B978-0-323-95965-0.00001-9
Sanchez-Bayo, A., López-Chicharro, D., Morales, V., Espada, J. J., Puyol, D., Martínez, F., Astals, S., Vicente, G., Bautista, L. F., & Rodríguez, R. (2020). Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach. Renewable Energy, 146, 188–195. 10.1016/j.renene.2019.06.139
Shahbaz, A., Hussain, N., Saleem, M. Z., Saeed, M. U., Bilal, M., & Iqbal, H. M. (2022). Nanoparticles as stimulants for efficient generation of biofuels and renewables. Fuel, 319, 123724. 10.1016/j.fuel.2022.123724
Sharma, P. & Sharma, N. (2024). RSM approach to pretreatment of lignocellulosic waste and a statistical methodology for optimizing bioethanol production. Waste Management Bulletin, 2(1), pp.49-66. 10.1016/j.wmb.2023.12.004
Sivakumar, N., & Dhandayuthapani, K. (2025). Bioethanol production from hydrolysate of defatted biomass of double mutant Pseudochlorella pringsheimii under optimized condition. Indian Journal of Natural Sciences, 15(88), 89144–89155.
Srinivasulu, B., Adinarayana, K., & Ellaiah, P. (2003). Investigations on neomycin production with immobilized cells of Streptomyces marinensis NUV-5 in calcium alginate matrix. AAPS PharmSciTech, 4, 449–454. 10.1208/pt040447
Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. 10.1016/j.biortech.2010.02.042
Thuy, C. X., Pham, V. T., Nguyen, T. T. N. H., Nguyen, T. T. N., Ton, N. T. A., Tuu, T. T., & Vu, N. D. (2024). Effect of fermentation conditions (dilution ratio, medium pH, total soluble solids, and Saccharomyces cerevisiae yeast ratio) on the ability to ferment cider from tamarillo (Solanum betaceum) fruit. Journal of Food Processing and Preservation, 2024(1), 8841207. 10.1155/2024/8841207
Uzoejinwa, B. B., Ezeama, A. O., Anioke, C. L., Ogwo, V., Ifeanyi-Obiorah, P. C., & Obiora, C. M. (2025). Effect of zinc oxide, manganese dioxide nanoparticles and their blends on yield and quality of bioethanol produced from co-fermentation of banana and potato peels. Nigerian Journal of Technology, 44(1), 123–132. 10.4314/njt.v44i1.14
Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573–584. 10.1016/j.jece.2013.12.004
Zhao, X. Q., & Bai, F. W. (2012). Zinc and yeast stress tolerance: Micronutrient plays a big role. Journal of Biotechnology, 158(4), 176–183. 10.1016/j.jbiotec.2011.11.017

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



