Article Main

Sanjay Kumar Roopa Rani Samal Manu Sankar Sarita Kumar Arvind Kumar Shakya

Abstract

Aedes aegypti is a major vector of arboviral diseases such as dengue, chikungunya, Zika, and yellow fever. Traditional chemical insecticides have led to widespread insecticide resistance and posed risks to non-target organisms and the environment. Insect growth regulators (IGRs) offer a promising alternative by disrupting mosquito development rather than inducing immediate lethality. The present study evaluated the efficacy of methoxyfenozide, a non-steroidal ecdysteroid agonist, in disrupting the development and chitin synthesis of Ae. aegypti larvae to explore its potential as a mosquito control agent. Larvicidal activity, inhibition of adult emergence, and effects on chitin synthesis were assessed using standard bioassays and biochemical
quantification techniques. Lethal concentrations and emergence inhibition dosages were determined using probit analysis. Methoxyfenozide exhibited dose-dependent larvicidal activity, with respective LC50 and LC90 values of 6.326 mg/L and 115.615 mg/L after 24 hours, and 4.180 mg/L and 119.100 mg/L after 48 hours, indicating a delayed action. The compound significantly inhibited adult emergence (p < 0.05), exhibiting an IE90 value of 1.209 mg/L. Morphological abnormalities, such as arrested moulting and structural deformities, were also observed. Biochemical analysis revealed a substantial reduction in chitin content in methoxyfenozide-treated larvae, with a greater decrease observed after longer treatment durations and at higher dosages. The study revealed that methoxyfenozide effectively disrupted Ae. aegypti development, inhibited both larval survival and adult emergence, as well as impeded chitin content deposition. The effective mode of action and minimal toxicity to non-target species highlight its potential for inclusion in integrated vector management strategies.


 

Article Details

Article Details

Keywords

Aedes aegypti, Chitin Synthesis inhibition , Larvicidal Activity, Insect growth regulator, Methoxyfenozide, Vector control

References
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18(2), 265-267. https://doi.org/10.1093/jee/18.2.265a
Ahmed, F.S., Helmy, Y.S. & Helmy, W.S. (2022). Toxicity and biochemical impact of methoxyfenozide/spinetoram mixture on susceptible and methoxyfenozide-selected strains of Spodoptera littoralis (Lepidoptera: Noctuidae). Scientific Reports, 12(1), 6974. https://doi.org/10.1038/s41598-022-10812-w
Arruda, L.S., Rodrigues, A.R., Bermudez, N.C., Ribeiro, L.M., Neto, J.E.L. & Siqueira, H.A. (2020). Field resistance of Plutella xylostella (Lepidoptera: Plutellidae) to lufenuron: Inheritance and lack of cross-resistance to methoxyfenozide. Crop Protection, 136, 105237. https://doi.org/10.1016/j.cropro.2020.105237
Benelli, G. & Mehlhorn, H. (2016). Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitology Research, 115, 1747–1754. https://doi.org/10.1007/s00436-016-4971-z
Chen, J., Jiang, W., Hu, H., Ma, X., Li, Q., Song, X., Ren, X. & Ma, Y. (2019). Joint toxicity of methoxyfenozide and lufenuron on larvae of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Journal of Asia Pacific Entomology, 22(3), 795-801. https://doi.org/10.1016/j.aspen.2019.06.004
Da Costa, G.V., Neto, M.F., Da Silva, A.K., De Sá, E.M., Cancela, L.C., Vega, J.S., Lobato, C.M., Zuliani, J.P., Espejo-Román, J.M., Campos, J.M. & Leite, F.H. (2022). Identification of potential insect growth inhibitor against Aedes aegypti: a bioinformatics approach. International Journal of Molecular Science, 23(15), 8218. https://doi.org/10.3390/ijms23158218
El-Shazly, M.M. & Refaie, B.M. (2002). Larvicidal effect of the juvenile hormone mimic pyriproxyfen on Culex pipiens. Journal of the American Mosquito Control Association, 18(4), 321–328.
El-Shewy, A.M., Hamouda, S.S., Gharib, A.M., Gad, H.A. & Abdelgaleil, S.A. (2024). Potential of insect growth regulators for the control of Musca domestica (Diptera: Muscidae) with respect to their biochemical and histological effects. Journal of Basic and Applied Zoology, 85(1), 43. https://doi.org/10.1186/s41936-024-00333-1
Fansiri, T., Pongsiri, A., Khongtak, P., Nitatsukprasert, C., Chittham, W., Jaichapor, B.. Pathawong, N., Kijchalao, U., Tiangtrong, S., Singkhaimuk, P. & Ponlawat, A. (2022). The impact of insect growth regulators on adult emergence inhibition and the fitness of Aedes aegypti field populations in Thailand. Acta Tropica 236, 106695. https://doi.org/10.1016/j.actatropica.2022.106695
Fiaz. M., Martínez, L.C., Plata-Rueda, A., Cossolin, J.F.S., Serra, R.S., Martins, G.F., & Serrão, J.E. (2021). Behavioral and ultrastructural effects of novaluron on Aedes aegypti larvae. Infection, Genetics and Evolution, 93, 104974. https://doi.org/10.1016/j.meegid.2021.104974
Hamaidia, K. & Soltani, N. (2021). Methoxyfenozide, a molting hormone agonist, affects autogeny capacity, oviposition, fecundity, and fertility in Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 58(3), 1004-1011. https://doi.org/10.1093/jme/tjaa260
Hamaidia, K., Tine-Djebbar, F. & Soltani, N. (2018). Activity of a selective insecticide (methoxyfenozide) against two mosquito species (Culex pipiens and Culiseta longiareolata): toxicological, biometrical and biochemical study. Physiological Entomology, 43(4), 315–323. https://doi.org/10.1111/phen.12261
Hazarika, H., Rajan, R.K., Pegu, P. & Das, P. (2025). Insecticide resistance in mosquitoes: molecular mechanisms, management, and alternatives. Journal of Pest Science, 58(3), 1004-1011. https://doi.org/10.1093/jme/tjaa260
Herath, J.M.K., De Silva, W.P.P., Weeraratne, T.C. & Karunaratne, S.P. (2024). Efficacy of the insect growth regulator novaluron in the control of dengue vector mosquitoes Aedes aegypti and Ae. albopictus. Scientific Reports, 14(1), 1988. https://doi.org/10.1038/s41598-024-52384-x
Kamal, H.A. & Khater, E.I. (2010). The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. Journal of the Egyptian Society of Parasitology, 40(3), 565–574.
Khan, G.Z., Khan, I., Khan, I.A., Salman, M. & Ullah, K. (2016). Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 6(6), 485-491. https://doi.org/10.1016/j.apjtb.2016.04.008
Killeen, G.F., Seyoum, A., Sikaala, C., Zomboko, A.S., Gimnig, J.E., Govella, N.J. & White, M.T. (2013). Eliminating malaria vectors. Parasites & Vectors, 6, 1–10. https://doi.org/10.1186/1756-3305-6-172
Kumar, S., Thomas, A., Samuel, T., Sahgal, A., Verma, A. & Pillai, M.K.K. (2009). Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L. Tropical Biomedicine, 26(2), 55-64.
Lehmann, P.T. & White, L.O. (1975). Chitin assay used to demonstrate renal localization and cortisone-enhanced growth of Aspergillus fumigatus mycelium in mice. Infection and Immunity, 12(5), 987–992. https://doi.org/10.1128/iai.12.5.987-992.1975
Lisi, F., Amichot, M., Desneux, N., Gatti, J.L., Guedes, R.N.C., Nazzi, F., Pennacchio, F., Russo, A., Sánchez-Bayo, F., Wang, X. & Zappalà, L. (2024). Pesticide immunotoxicity on insects - Are agroecosystems at risk? Science and Total Environment,.175467. https://doi.org/10.1016/j.scitotenv.2024.175467
Lucchesi, V., Grimaldi, L., Mastrantonio, V., Porretta, D., Di Bella, L., Ruspandini, T., Di Salvo, M.L., Vontas, J., Bellini, R., Negri, A., Epis, S., Caccia, S., Bandi, C. & Urbanelli, S. (2022). Cuticle modifications and over-expression of the chitin-synthase gene in diflubenzuron-resistant phenotype. Insects, 13(12), 1109. https://doi.org/10.3390/insects13121109
Ma, L., Zhao, Z., Yang, R., Su, Q., Peng, Y. & Zhang, W. (2024). Dissecting the manipulation of lufenuron on chitin synthesis in Helicoverpa armigera. Pesticide Biochemistry and Physiology, 202, 105962. https://doi.org/10.1016/j.pestbp.2023.105962
National Vector Borne Disease Control Programme (NVBDCP) (2025) Dengue/DHF situation in India. [Online] Available at: https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 (Accessed on May 05, 2025).
Punniyakotti, P., Vinayagam, S., Rajamohan, R., Priya, S.D., Moovendhan, M. & Sundaram, T. (2024). Environmental fate and ecotoxicological behaviour of pesticides and insecticides in non-target environments: Nanotechnology-based mitigation strategies. Journal of Environmental Chemical Engineering, 12(5), 113349. https://doi.org/10.1016/j.jece.2024.113349
Rahman, A., Khan, I., Usman, A., & Khan, H. (2024). Evaluation of Insect Growth Regulators (IGRs) as biological pesticides for control of Aedes aegypti mosquitoes. Journal of Vector Borne Diseases, 61(1), 129-135. https://doi.org/10.4103/0972-9062.392257
Saber, M., Parsaeyan, E., Vojoudi, S., Bagheri, M., Mehrvar, A. & Kamita, S.G. (2013). Acute toxicity and sublethal effects of methoxyfenozide and thiodicarb on survival, development and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Crop Protection, 43, 14-17. https://doi.org/10.1016/j.cropro.2012.09.011
Salem, S.A., Alhousini, E.M., Al-Amgad, Z. & Mahmoud, M.A. (2024). Efficiency of spinetoram on biological, biochemical, and histological parameters in the invasive fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in Egypt. Journal of Plant Disease and Protection, 131(2), 489–499. https://doi.org/10.1007/s41348-023-00794-0
Salokhe, S.G., Deshpande, S.G., Mukherji, S.N., Pakhale, K. & Maniyar, A.B. (2013). IGR, Lufenuron, alters chitin and total soluble protein content of Aedes aegypti larvae during development. International Journal of Current Science, 7, 134-138.
Samal, R.R. & Kumar, S. (2021) Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. International Journal of Tropical Insect Science, 41(1), 809–820. https://doi.org/10.1007/s42690-020-00271-z
Samal, R.R., Panmei, K., Lanbiliu, P. & Kumar, S. (2022a). Reversion of CYP450 monooxygenase-mediated acetamiprid larval resistance in dengue fever mosquito, Aedes aegypti L. Bulletin of Entomological Research, 112(4), 557–566. https://doi.org/10.1017/S000748532100 1006
Samal, R.R., Panmei, K., Lanbiliu, P. & Kumar, S. (2022b). Metabolic detoxification and ace-1 target site mutations associated with acetamiprid resistance in Aedes aegypti L. Frontiers in Physiology, 13, 988907. https://doi.org/10.3389/fphys.2022.988907
Sankar, M. & Kumar, S. (2023). A systematic review on the eco-safe management of mosquitoes with diflubenzuron: an effective growth regulatory agent. Acta Ecologica Sinica, 43(1), 11–19. https://doi.org/10.1016/j.chnaes.2021.11.002
Sankar, M., Yadav, D. & Kumar, S. (2024) Evaluation of diflubenzuron–verapamil combination strategy for eco-safe management of Aedes aegypti. Frontiers in Physiology, 15, 1476259. https://doi.org/10.3389/fphys.2024.14 76259
Seccacini, E., Lucia, A., Harburguer, L., Zerba, E., Licastro, S. & Masuh, H. (2008). Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicides against Aedes aegypti. Journal of the American Mosquito Control Association, 24(3), 398-403. https://doi.org/10.2987/5697.1
Şengül Demirak, M.Ş. & Canpolat, E. (2022). Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects, 13(2), 162. https://doi.org/10.3390/insects13020162
Sharma, A., Kumar, S. & Tripathi, P. (2016). Evaluation of the larvicidal efficacy of five indigenous weeds against an Indian strain of dengue vector, Aedes aegypti L. (Diptera: Culicidae). Journal of Parasitology Research, 2016, 2857089. https://doi.org/10.1155/2016/2857089
Smagghe, G., Gomez, L.E. & Dhadialla, T.S. (2012). Bisacylhydrazine insecticides for selective pest control. Advances in Insect Physiology, 43, 163–249. https://doi.org/10.1016/B978-0-12-391500-9.00002-4
Tanani, M.A., Hasaballah, A.I. & Hussein, R.M. (2022). Assessment of the perturbation induced by chitin synthesis inhibitors lufenuron, flufenoxuron and hexaflumuron in the house fly, Musca domestica vicina (Diptera: Muscidae). Journal of Basic and Applied Zoology, 83(1), 29. https://doi.org/10.1186/s41936-021-00250-2
Tunaz, H. & Uygun, N. (2004). Insect growth regulators for insect pest control. Turkish Journal of Agricultural Forestry, 28(6), 377–387.
Waggoner, J.J., Gresh, L., Vargas, M.J., Ballesteros, G., Tellez, Y., Soda, K.J., Sahoo, M.K., Nunez, A., Balmaseda, A., Harris, E. & Pinsky, B.A. (2016). Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clinical Infectious Diseases, 63(12), 1584-1590. https://doi.org/10.1093/cid/ciw589
WHO (World Health Organization) (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations. Available at: http://apps.who.int/iris/bitstream/handle/10665/204588/WHO_ZIKV_VC_16.1_eng.pdf?sequence=2
WHO (World Health Organization) (2024a). Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (Accessed on March 18, 2025)
WHO (World Health Organization) (2024b). Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (Accessed on April 10, 2025)
Zhang, J. & Zhu, K.Y. (2006). Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochemistry and Molecular Biology, 36(9), 712–725. https://doi.org/10.1016/j.ibmb.2006.06.002
Zhang, G., Zou, H., Geng, N., Ding, N., Wang, Y., Zhang, J. & Zou, C. (2019). Fenoxycarb and methoxyfenozide (RH-2485) affected development and chitin synthesis through disturbing glycometabolism in Lymantria dispar larvae. Pesticide Biochemistry and Physiology, 163, 64-75. https://doi.org/10.1016/j.pestbp.2019.10.009
Zhu, K.Y., Heise, S., Zhang, J., Anderson, T.D. & Starkey, S.R. (2007). Comparative studies on effects of three chitin synthesis inhibitors on common malaria mosquito (Diptera: Culicidae). Journal of Medical Entomology,
 44(6), 1047-1053. https://doi.org/10.1093/jmedent/4 4.6.1047
Zibaee, A., Zibaee, I. & Sendi, J.J. (2011). A juvenile hormone analog, pyriproxyfen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pesticide Biochemistry and Physiology, 100(3), 289–298. https://doi.org/10.1016/j.pestbp.2011.05.002
Section
Research Articles

How to Cite

Methoxyfenozide as a potent insect growth regulator: Disruption of growth, development and chitin synthesis in Aedes aegypti for sustainable vector control. (2025). Journal of Applied and Natural Science, 17(2), 951-960. https://doi.org/10.31018/jans.v17i2.6864