Article Main

Puji Harsono Nur Azizah Uswatun Hasanah Edi Purwanto Samanhudi

Abstract

Remediation of cadmium (Cd)-contaminated soil is a critical challenge for sustainable agricultural productivity. This study aimed to evaluate the effectiveness of integrating sorghum varieties, planting systems (non-ratoon vs. ratoon), and mycorrhizal inoculation for improving the subsequent yield of rice. The experiment was conducted in a paddy field in Sleman, Indonesia, with an initial soil Cd concentration of 2.91 mg kg-¹, using a randomized complete block design (RCBD) with two factors and three replicates. Results showed that remediation treatments had a significant effect on rice yield. The treatment using the Kawali sorghum variety, combined with mycorrhiza and planted using the non-ratoon system, yielded the highest milled rice yield of 2.99 t ha-¹, far exceeding the control, which reached only 0.17 t ha-¹. The highest 1,000-grain weight was obtained from the Super 1-mycorrhiza treatment (39.13 g), while the highest percentage of filled grains (above 90%) was achieved in the Samurai 1-mycorrhiza treatment with the ratoon system. The planting system also had an effect, with the ratoon system improving grain quality, while the non-ratoon system was superior in total yield. These findings confirm that a tailored combination of sorghum varieties, mycorrhiza, and cultivation strategies is crucial for restoring rice productivity on contaminated soil.


 

Article Details

Article Details

Keywords

Biotic interaction, Cadmium contaminated soil, Cereal productivity, Mycorrhizal inoculation, Plant bioremediation, Soil restoration

References
Ali, F. Y., Kusumaningtyas, R. N., Pratita, D. G., Kusuma, S. I., Arifiana, N. B. & Rosdiana, E. (2025). Improvement nutrient uptake of robusta coffee seedlings (Coffea canephora) through the Application of plant growth promoting rhizobacteria and mycorrhiza. IOP Conference Series Earth and Environmental Science, 1446(1), 012035. https://doi.org/10.1088/1755-1315/1446/1/012035
Babadi, M., Zalaghi, R. & Taghavi, M. (2019). A non-toxic polymer enhances sorghum-mycorrhiza symbiosis for bioremediation of Cd. Mycorrhiza, 29(4), 375–387. https://doi.org/10.1007/s00572-019-00902-5
Bartsch, Z. J., DeSutter, T. M., Gasch, C. K. & Casey, F. X. M. (2022). Plant growth, soil properties, and microbial community four years after thermal desorption. Agronomy Journal, 114(2), 1011–1026. https://doi.org/10.1002/agj2.21008
Behera, P. P., Saharia, N., Borah, N., Devi, S. H. & Sarma, R. N. (2022). Sorghum physiology and adaptation to abiotic stresses. International Journal of Environment and Climate Change, 1005–1022. https://doi.org/10.9734/ijecc/2022/v12i1030891
Chu, J., Zhu, F., Chen, X., Liang, H., Wang, R., Wang, X. & Huang, X. (2018). Effects of cadmium on photosynthesis of Schima superba young plant detected by chlorophyll fluorescence. Environmental Science and Pollution Research, 25(11), 10679–10687. https://doi.org/10.1007/s11356-018-1294-x
Dharma, K., Suryanti, S. & Widiastuti, A. (2024). Hormesis in pathogenic and biocontrol fungi: From inhibition to stimulation. Caraka tani: Journal of Sustainable Agriculture, 39(2), 281–296. http://dx.doi.org/10.20961/carakatani.v3 9i2.83012
Dinh, T. T. T. (2020). Accumulation and distribution of heavy metal cadmium in sweet sorghum. The Journal of Agriculture and Development, 19(03), 57–64. https://doi.org/10.52997/jad.9.03.2020
Feka, D. P., Anhwange, B. A. & Adie, P. A. (2022). Toxic metals contamination of paddy (Oryza sativa) and imported rice sold in Kaduna and its human health risk assessment. Research Square. https://doi.org/10.21203/rs.3.rs-1953036/v1
Fontes, G. P., Tomlinson, P. J., Roozeboom, K. L.& Diaz, D. a. R. (2017). Grain sorghum response to nitrogen fertilizer following Cover crops. Agronomy Journal, 109(6), 2723–2737. https://doi.org/10.2134/agronj2017.03.0180
Gao, Y., An, T., Kuang, Q., Wu, Y., Liu, S., Liang, L., Yu, M., Macrae, A. & Chen, Y. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. The Science of the Total Environment, 902, 166091. https://doi.org/10.1016/j.scitotenv.2023.166091
Geo, J. (2018). Association of glomus intraradices in sorghum bicolor. International Journal of Agricultural Science and Food Technology, 003–006. https://doi.org/10.17 352/2455-815x.000029
Gomez, K. A. & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research (2nd ed.). John Wiley & Sons.
Hanif, S., Ali, S., Chaudhry, A. H., Sial, N., Marium, A.& Mehmood, T. (2025). A Review on soil metal contamination and its environmental implications. Nature Environment and Pollution Technology, 24(1), 1-14. https://doi.org/10.46488/NEPT.2025.v24i01.D1684
Hasanah, N. a. U., Purwanto, E., Harsono, P., Samanhudi, S. & Sakya, A. T. (2023). Morphological responses of six sorghum varieties on cadmium-contaminated soil. Biodiversitas Journal of Biological Diversity, 24(7). https://doi.org/10.13057/biodiv/d240729
He, J., Dai, H., Zhang, X. & Wang, E. (2023). Mycorrhizal signals promote root development dependent on LysM-receptor like kinases in rice. New Crops, 1, ,09. https://doi.org/10.1016/j.ncrops.2023.12.004
Hossain, M. S., Islam, M. N., Rahman, M. M., Mostofa, M. G. & Khan, M. a. R. (2022). Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research, 8, 100300. https://doi.org/10.1016/j.jafr.2022.100300
Hou, L., Ji, S., Zhang, Y., Wu, X., Zhang, L. & Liu, P. (2023). The mechanism of silicon on alleviating cadmium toxicity in plants: A review. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1141138
Huang, S., Lu, Z., Zhao, X., Tan, W., Wang, H., Liu, D.& Xing, W. (2024). Molecular basis of energy crops functioning in bioremediation of heavy metal pollution. Agriculture, 14(6), 914. https://doi.org/10.3390/agriculture14060914
Kumar, P., Kmar, A., Rani, A., Bhati, H. P., Choudhary, S., Singh, R.& Chaudhary, N. (2021). Phytoremediaton: An Alternative Approach to Detoxify Heavy Metals with Arbuscular Mycorrhizal Fungi. NVEO - Natural Volatiles & Essential Oils Journal, 16874–16887. https://doi.org/10.53555/nveo.v8i4.5557
Lee, H. & Back, K. (2017). Cadmium disrupts subcellular organelles, including chloroplasts, resulting in melatonin induction in plants. Molecules, 22(10), 1791. https://doi.org/10.3390/molecules22101791
Liu, M., Luo, X., Gu, J., Yi, X., Zhou, H., Zeng, P. & Liao, B. (2024). Cadmium phytoremediation effect of sweet sorghum assisted with citric acid on typical parent soil in Southern China. PubMed, 45(5), 3016–3026. https://doi.org/10.13227/j.hjkx.202306027
Liu, S., Fu, H., Jiang, J., Chen, Z., Gao, J., Shu, H., Zhang, S., Yang, C. & Liu, J. (2019). Overexpression of a CPYC-Type glutaredoxin, OSGRXC2.2, causes abnormal embryos and an increased grain weight in rice. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00848
Liu, S., Fu, L., Zhang, C., Deng, J., Xue, W.& Deng, Y. (2023). Effects of exogenous chlorinated amino acetic acid on cadmium and mineral elements in rice seedlings. Toxics, 11(1), 71. https://doi.org/10.3390/toxics11010071
Liu, Z., Li, H., Zeng, X., Lu, C., Fu, J., Guo, L., Kimani, W. M., Yan, H., He, Z., Hao, H. & Jing, H. (2020). Coupling phytoremediation of cadmium-contaminated soil with safe crop production based on a sorghum farming system. Journal of Cleaner Production, 275, 123002. https://doi.org/10.1016/j.jclepro.2020.123002
May, A., Da Silva, E. H. F. M., De Souza Dos Santos, M., Da Silva Viana, R., Santos, F. C. D. & De Albuquerque Filho, M. R. (2020). Use of biomass sorghum for the bioremediation of heavy metal-contaminated environments. Research Society and Development, 9(9), e95996770. https://doi.org/10.33448/rsd-v9i9.6770
Mindari, W., Chakim, M., Widjajani, B., Sasongko, P., Aditya, H., Pazi, A.& Gandaseca, S. (2025). The optimization of biosilica and humic acid to increase soil nutrient availability and nutrient uptake in rice plant in sandy soil. Caraka Tani: Journal of Sustainable Agriculture, 40(1), 18-33. http://dx.doi.org/10.20961/carakatani.v40i1.89018
Mishra, D., Kumar, S.& Mishra, B. N. (2020). An overview of morpho-physiological, biochemical, and molecular responses of sorghum towards heavy metal stress. Reviews of Environmental Contamination and Toxicology, 155–177. https://doi.org/10.1007/398_2020_61
Mohammed, K., Eid, M. & Usman, A. (2024). Enhancing the agronomic performance of potassium fertilizer and potassium-bearing minerals in sandy loam soil by adding humic acids and mycorrhiza. Assiut Journal of Agricultural Sciences/Assuit Journal of Agricultural Sciences, 0(0), 0. https://doi.org/10.21608/ajas.2023.243994.1303
Musa, I. O., Ijah, U. J. J., Abioye, O. P., Abdulsalam, M., Pal, S. K., Abamhekhelu, I. A., Maude, A. M., Yusuf, O. O.& Akande, S. A. (2024). Phytoremediation of Heavy Metal-Contaminated soil. In CRC Press eBooks (pp. 35–52). https://doi.org/10.1201/9781003423393-2
Nasslahsen, B., Prin, Y., Ferhout, H., Smouni, A. & Duponnois, R. (2022). Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Frontiers in Soil Science, 2. https://doi.org/10.3389/fsoil.2022.979246
Ngo, H. T. T., Hang, N. T. T., Nguyen, X. C., Nguyen, N. T. M., Truong, H. B., Liu, C., La, D. D., Kim, S. S. & Nguyen, D. D. (2024). Toxic metals in rice among Asian countries: A review of occurrence and potential human health risks. Food Chemistry, 460, 140479. https://doi.org/10.1016/j.foodchem.2024.140479
Nogawa, K., Suwazono, Y. & Kido, T. (2019). Long-Term Follow-Up study of residents exposed to cadmium in Kakehashi River Basin, Ishikawa, Japan. In Current Topics in Environmental Health and Preventive Medicine, (pp. 51–61). https://doi.org/10.1007/978-981-13-3630-0_4
Nungula, E. Z., Raza, M. A., Nasar, J., Maitra, S., Seleiman, M. F., Ranjan, S., Padhan, S. R., Sow, S., Gaikwad, D. J. & Gitari, H. H. (2024). Cadmium in soil and plants: A review. Springer Water, 21–43. https://doi.org/10.1007/978-3-031-54005-9_2
Oco, R., Devanadera, M., & de Grano, R. (2023). Utilization of Nostoc piscinale as Potential biofertilizer to the growth and development of Oryza sativa L. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 22-37. http://dx.doi.org/10.20961/carakatani.v39i1.77067
Pasumarthi, R., Rao, P. S. & Gopalakrishnan, S. (2024). Cultivation of sweet sorghum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanol. In Elsevier eBooks, Bioremediation and Bioeconomy (Second Edition), a circular economy approach (pp. 337–366). https://doi.org/10.1016/b978-0-443-16120-9.00005-4
Peroni, P., Liu, Q., Lizarazu, W. Z., Xue, S., Yi, Z., Von Cossel, M., Mastroberardino, R., Papazoglou, E. G., Monti, A. & Iqbal, Y. (2024). Biostimulant and arbuscular mycorrhizae application on four major biomass crops as the base of phytomanagement strategies in Metal-Contaminated soils. Plants, 13(13), 1866. https://doi.org/10.3390/plants13131866
Priya, A. K., Muruganandam, M., Ali, S. S. & Kornaros, M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 11(5), 422. https://doi.org/10.3390/toxics11050422
Riaz, M., Azhar, M. T., Kamran, M., Aziz, O.& Wang, X. (2022). Role of arbuscular mycorrhizal fungi in plant phosphorus acquisition for sustainable agriculture. In Sustainable Agriculture Reviews (pp. 155–176). https://doi.org/10.1007/978-3-031-16155-1_8
Rubio-Santiago, J., Rolón-Cárdenas, G. A., Hernández-Morales, A., Arvizu-Gómez, J. L.& Soria-Guerra, R. E. (2024). Cadmium toxicity in plants and its amelioration. In Cadmium Toxicity Mitigation (pp. 243–271). https://doi.org/10.1007/978-3-031-47390-6_10
Sefrila, M., Ghulamahdi, M., Purwono, P., Melati, M.& Mansur, I. (2023). Trap culture and colonization of arbuscular mycorrhizal fungi from corn roots in tidal swamps using several host plants. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 193–203. http://dx.doi.org/10.20961/carakatani.v38i1.70180
Soil and fertilizer instrument testing center. (2023). Technical Guidelines Edition 3: Chemical Analysis of Soil, Plants, Water, and Fertilizers. Ministry of agriculture of the republic of Indonesia, Indonesia.
Sun, L., Wang, J., Song, K., Sun, Y., Qin, Q. & Xue, Y. (2019). Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46684-w
Tan, Q., Wei, R., Hu, H.& Guo, Q. (2024). Role of arbuscular mycorrhizal fungi behind the plant ameliorated tolerance against cadmium stress: A global meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6946,. https://doi.org/10.5194/egusphere-egu24-6946
Thind, S., Hussain, I., Ali, S., Hussain, S., Rasheed, R., Ali, B. & Hussain, H. A. (2020). Physiological and biochemical bases of foliar Silicon-Induced alleviation of cadmium toxicity in wheat. Journal of Soil Science and Plant Nutrition, 20(4), 2714–2730. https://doi.org/10.1007/s42729-020-00337-4
Trinchera, A., Testani, E., Roccuzzo, G., Campanelli, G. & Ciaccia, C. (2021). Agroecological Service Crops drive plant mycorrhization in organic horticultural systems. Microorganisms, 9(2), 410. https://doi.org/10.3390/microorganisms9020410
Turkovskaya, O. V., Muratova, A. Y., Dubrovskaya, E. V., Bondarenkova, A. D. & Lyubun, E. V. (2020). Phytoremediation potential of sorghum bicolor for soil decontamination from oil hydrocarbons and heavy metals. The Agrarian Scientific Journal, 12, 50–54. https://doi.org/10.28983/asj.y2020i12pp50-54
Vilela, L. a. F.& Barbosa, M. V. (2019). Contribution of arbuscular mycorrhizal fungi in promoting cadmium tolerance in plants. In Elsevier eBooks (pp. 553–586). https://doi.org/10.1016/b978-0-12-815794-7.00021-7
Wang, P., Chen, H., Kopittke, P. M. & Zhao, F. (2019). Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 249, 1038–1048. https://doi.org/10.1016/j.envpol.2019.03.063
Wang, W., Kong, W., Shen, T., Man, Z., Zhu, W., He, Y. & Liu, F. (2021). Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods. Environmental Sciences Europe, 33(1). https://doi.org/10.1186/s12302-021-00480-4
Xu, Y., Lambers, H., Feng, J., Tu, Y., Peng, Z. & Huang, J. (2024). The role of arbuscular mycorrhizal fungi in micronutrient homeostasis and cadmium uptake and transfer in rice under different flooding intensities. Ecotoxicology and Environmental Safety, 284, 116978. https://doi.org/10.1016/j.ecoenv.2024.116978
Yamaji, N. & Feng, J., MA. (2019). Bioimaging of multiple elements by high‐resolution LA‐ICP‐MS reveals altered distribution of mineral elements in the nodes of rice mutants. The Plant Journal, 99(6), 1254–1263. https://doi.org/10.1111/tpj.14410
Yan, A., Wang, Y., Tan, S. N., Yusof, M. L. M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00359
Yomso, J. & Siddique, A. (2022). Phytotoxic Effect of Cadmium Induced Stress on LAI, CGR and Yield of Rice Plant (Oryza sativa L.). Agricultural Science Digest, 44(1). https://doi.org/10.18805/ag.d-5587
Yuan, S., Jiang, Y., Chen, P., Tu, N., Zhou, W. & Yi, Z. (2024). Difference in Cd accumulation among varieties with different growth duration corresponding to typical agro-climate condition in rice ratooning system. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1383428
Yuana, H., Purwoko, B., Suwarno, W., Dewi, I.& Gunarsih, C. (2025). Yield Trial of Doubled-Haploid Rice Lines with Multiple Abiotic Stress Tolerance. Caraka Tani: Journal of Sustainable Agriculture, 40(3), 390–403. http://dx.doi.org/10.20961/carakatani.v40i3.94856
Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C. & Lin, Y. (2022). Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells, 11(3), 569. https://doi.org/10.3390/cells11030569
Zhao, S., Yan, L., Kamran, M., Liu, S. & Riaz, M. (2024a). Arbuscular mycorrhizal fungi-assisted phytoremediation: A promising strategy for cadmium-contaminated soils. Plants, 13(23), 3289. https://doi.org/10.3390/plants13233289
Zhao, T., Wang, L. & Yang, J. (2024b). Synergistic effects of combined application of biochar and arbuscular mycorrhizal fungi on the safe production of rice in cadmium contaminated soil. The Science of the Total Environment, 951, 175499. https://doi.org/10.1016/j.scitotenv.2024.1 75499.
Section
Research Articles

How to Cite

Enhancing rice yield potential on cadmium contaminated soils through sorghum and mycorrhiza integration. (2025). Journal of Applied and Natural Science, 17(4), 1539-1549. https://doi.org/10.31018/jans.v17i4.6851