Article Main

James Baben George Neethu Cyril Sam John Sylas V. P Laigi Joseph Saratchandran A. Divakaran Pramod Kumar N

Abstract

Mangrove-associated plants are rich reservoirs of unique bioactive compounds, owing to their adaptation to harsh coastal environments, yet many remain underexplored for their therapeutic potential. Seed oils from such species offer a promising source of natural antioxidants and anticancer agents. The present study aimed to conduct phytochemical characterization, antioxidant assessment, and anticancer evaluation of seed oils extracted from selected mangrove-associated plants — Thespesia populnea, Canavalia cathartica, and Derris trifoliata — using n-hexane via Soxhlet extraction. Preliminary phytochemical screening revealed that T. populnea oil possessed the highest total phenolic (65.27 ± 0.25 mg GAE/g) and flavonoid (233.57 ± 1.51 mg QE/g) contents. Gas Chromatography–Mass Spectrometry (GC–MS) and High-Performance Thin-Layer Chromatography (HPTLC) profiling confirmed the presence of diverse bioactive compounds such as tocopherols, flavonoids, sterols, terpenoids, and polyunsaturated fatty acids (PUFAs). Antioxidant activity was assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS·+) and Superoxide Dismutase (SOD) assays showed that oil of T. populnea exhibited the strongest radical scavenging ability, correlating with its rich flavonoid content. In contrast, D. trifoliata seed oil demonstrated significant cytotoxicity against Dalton’s Lymphoma Ascites (DLA) cells (IC50 of 62.3 µg/mL) and moderate antiproliferative activity against MCF-7 breast cancer cells (EC50 of 80.50 µg/mL), supported by morphological evidence of apoptosis. These bioactivities are likely attributed to the presence of phytochemicals such as the triterpenoid C(14a)-Homo-27-norgammacer-14-ene, sterols like stigmasterol and γ-sitosterol, and flavonoids including rotenone. Overall, the findings suggest that these seed oils, especially those from T. populnea and D. trifoliata, offer promising prospects as sources of natural antioxidants and potential anticancer agents.


 

Article Details

Article Details

Keywords

Antioxidant, Canavalia cathartica, Derris trifoliata, Thespesia populnea, MCF-7

References
Ahlawat, Y. K., Singh, M., Manorama, K., Lakra, N., Zaid, A., & Zulfiqar, F. (2024). Plant phenolics: neglected secondary metabolites in plant stress tolerance. Brazilian Journal of Botany, 47(3), 703-721.
Anand, R., & Kaithwas, G. (2014). Anti-inflammatory potential of alpha-linolenic acid mediated through selective COX inhibition: computational and experimental data. Inflammation, 37(4), 1297-1306.
Anwer, M. S., & El-Sayed, W. M. (2025). Exploring Tephrosin: A review of its potential in cancer therapy and multifaceted anticancer mechanisms. South African Journal of Botany, 177, 320-328.
Aquino, R., Morelli, S., Lauro, M. R., Abdo, S., Saija, A., & Tomaino, A. (2001). Phenolic constituents and antioxidant activity of an extract of anthurium v ersicolor leaves. Journal of Natural Products, 64(8), 1019-1023. doi:10.1021/np0101245.
Aruoma, O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American oil chemists' society, 75(2), 199-212. doi:10.1007/s11746-998-0032-9.
Asari, N., Suratman, M. N., & Ayob, N. A. M. (2021). Mangrove as a Natural Barrier. Mangroves: Ecology, Biodiversity and Management, 305. doi:10.1007/978-981-16-2494-0_13.
Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: an overview. Plant metabolites and regulation under environmental stress, 153-167. doi:10.1016/B978-0-12-812689-9.00008-X.
Bandaranayake, W. (1998). Traditional and medicinal uses of mangroves. Mangroves and salt marshes, 2(3), 133-148.doi:10.1023/A:1009988607044.
Barton, H. J. (2010). A “zero sample concentration approach”: Standardization of methods for the estimation of total antioxidant activity by the use of extrapolation to zero sample concentration. A novel standard. 1. ABTS cation radical scavenging. Journal of agricultural and food chemistry, 58(16), 8918-8926.doi:10.1021/jf101066w.
Boonsri, S., Karalai, C., Ponglimanont, C., Chantrapromma, S., & Kanjana-Opas, A. (2008). Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. Journal of natural products, 71(7), 1173-1177. doi:10.1021/np800055q.
Cai, Y. Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2006). Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life sciences, 78(25), 2872-2888. doi:10.1016/j.lfs.2005.11.004.
d de Lima, D. P., Júnior, E. D. S. P., de Menezes, A. V., de Souza, D. A., de São José, V. P. B., da Silva, B. P., ... & de Carvalho, I. M. M. (2024). Chemical composition, minerals concentration, total phenolic compounds, flavonoids content and antioxidant capacity in organic and conventional vegetables. Food Research International, 175, 113684. doi: 10.1016/j.foodres.2023.113684
Dhawan, V. (2014). Reactive oxygen and nitrogen species: general considerations. In Studies on respiratory disorders (pp. 27-47). New York, NY: Springer New York.doi:10.1007/978-1-4939-0497-6_2.
Gaber, N. B., El-Dahy, S. I., & Shalaby, E. A. (2023). Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Conversion and Biorefinery, 13(5), 4011-4020.doi:10.1007/s13399-021-01386-0.
Gaydou, E. M., Viano, J., & Bourreil, P. L. (1992). Canavalia ensiformis neutral lipids, a rich source of lupeol. Journal of the American Oil Chemists’ Society, 69(5), 495-497. doi:10.1007/BF02540958.
Gonçalves, A. C., Falcão, A., Alves, G., Silva, L. R., & Flores-Félix, J. D. (2024). Antioxidant activity of the main phenolics found in red fruits: An in vitro and in silico study. Food chemistry, 452, 139459.doi:10.1016/j.foodchem.2024.139459.
Haida, Z., & Hakiman, M. (2019). A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food science & nutrition, 7(5), 1555-1563.doi:10.1002/fsn3.1012.
Inoue, T. (2018). Carbon sequestration in mangroves. In Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation (pp. 73-99). Singapore: Springer Singapore. doi:10.1007/978-981-13-1295-3_3.
Inbaraj, J. J., Gandhidasan, R., & Murugesan, R. (1999). Photodynamic action of some naturally occurring quinones: formation of reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 124(1-2), 95-99. doi:10.1016/S1010-6030(99)00040-4.
Keneni, Y. G., Bahiru, L. A., & Marchetti, J. M. (2021). Effects of different extraction solvents on oil extracted from jatropha seeds and the potential of seed residues as a heat provider. BioEnergy Research, 14(4), 1207-1222.doi:10.1007/s12155-020-10217-5.
Kumar, M. K., & Pola, S. (2023). Mangrove species as a potential source of bioactive compounds for diverse therapeutic applications. In Marine Antioxidants (pp. 249-263). Academic Press. doi:10.1016/B978-0-323-95086-2.00020-5.
Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the MTT assay. Cold spring harbor protocols, 2018(6), pdb-prot095505.doi: 10.1101/pdb.prot0 95505
Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., ... & Li, B. (2024). Classification and antioxidant assays of polyphenols: A review. Journal of Future Foods, 4(3), 193-204. doi:10.1016/j.jfutfo.2023.07.002.
Larramendy, M., & Soloneski, S. (Eds.). (2018). Genotoxicity: A predictable risk to our actual world. BoD–Books on Demand.
Lin, C. C., Wu, S. J., Chang, C. H., & Ng, L. T. (2003). Antioxidant activity of Cinnamomum cassia. Phytotherapy Research, 17(7), 726-730. doi: 10.1002/ptr.1190.
Mandelker, L. (2011). Oxidative stress, free radicals, and cellular damage. In Studies on veterinary medicine (pp. 1-17). Totowa, NJ: Humana Press.doi:10.1007/978-1-61779-071-3_1.
McLeod, R. S., LeBlanc, A. M., Langille, M. A., Mitchell, P. L., & Currie, D. L. (2004). Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. The American journal of clinical nutrition, 79(6), 1169S-1174S.doi:10.1093/ajcn/79.6.1169S.
McCord, J. M., & Edeas, M. A. (2005). SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomedicine & Pharmacotherapy, 59(4), 139-142.doi:10.1016/j.biopha.2005.03.005.
Mostofa, M. G., Reza, A. A., Khan, Z., Munira, M. S., Khatoon, M. M., Kabir, S. R., ... & Alam, A. K. (2024). Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon, 10(1).doi:10.1016/j.heliyon.2023.e23400.l
Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future journal of pharmaceutical sciences, 7(1), 25.doi: 10.1186/s43094-020-00161-8
Nha Trang, B. T., Mai, N. T., Anh, B. T. M., Dung, D. T., Tai, B. H., & Kiem, P. V. (2024). The genus Derris Lour., a potential source of valuable biologically active ingredients. Vietnam Journal of Chemistry.doi:10.1002/vjch.202400124.
Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of agricultural and food chemistry, 52(15), 4669-4674.doi:10.1021/jf0400056.
Ochida, C. O., Itodo, A. U., Anhwange, B. A., Onoja, P. O., & Nwanganga, P. A. (2024). In vitro and In vivo Antioxidant Effect of Mango, Coconut and Cotton Seed Oils on Hydrogen Peroxide-Induced Oxidative Stress in Wistar Rats. Sahel Journal of Life Sciences FUDMA, 2(2), 64-73.doi:10.33003/sajols-2024-0202-09.
Okoh, S. O., Asekun, O. T., Familoni, O. B., & Afolayan, A. J. (2014). Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants, 3(2), 278-287.doi:10.3390/antiox3020278.
Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782.doi:10.1007/s12161-014-9814-x.
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30(1), 11-26. doi:10.1007/s12291-014-0446-0.
Plainfossé, H., Burger, P., Herbette, G., Bertrand, S., Verger-Dubois, G., Azoulay, S., ... & Fernandez, X. (2023). Anti-inflammatory and anti-aging potential of extracts and constituents from Teucrium lucidum L. aerial parts. Journal of Pharmacognosy and Phytochemistry, 12(5), 205-220.doi:10.22271/phyto.2023.v12.i5c.14727.
Prathamanjali, S., Babu, Y. R., & Vijaya, T. (2025). In vitro assessment of antimitotic, antiproliferative and anticancer activities of different sections of Cleistanthus collinus (Roxb.) Benth. Ex. Hook. F. Journal of Applied and Natural Science, 17(1), 407.doi:10.31018/jans.v17i1.6324.
Pyrzynska, K., & Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods, 5(17), 4288-4295.doi:10.1039/C3AY40367J.
Qian, Y., Dong, J., Zhang, W., Xue, X., Xiong, Z., Zeng, W., ... & Jiang, Y. (2024). Deguelin inhibits the glioblastoma progression through suppressing CCL2/NFκB signaling pathway. Neuropharmacology, 259, 110109.doi:10.1016/j.neuropharm.2024.110109.
Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed research international, 2014(1), 761264. doi:10.1155/2014/761264.
Rahman, Lokollo, F. F., Manuputty, G. D., Hukubun, R. D., Krisye, Maryono, ... & Wardiatno, Y. (2024). A review on the biodiversity and conservation of mangrove ecosystems in Indonesia. Biodiversity and Conservation, 33(3), 875-903. doi:10.1007/s10531-023-02767-9.
Roberts, R. A., Smith, R. A., Safe, S., Szabo, C., Tjalkens, R. B., & Robertson, F. M. (2010). Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology, 276(2), 85-94. doi:10.1016/j.tox.2010.07.009.
Sadeer, N. B., Zengin, G., & Mahomoodally, M. F. (2023). Biotechnological applications of mangrove plants and their isolated compounds in medicine-a mechanistic overview. Critical reviews in biotechnology, 43(3), 393-414.doi/abs/10.1080/07388551.2022.2033682 .
Shramko, V. S., Striukova, E. V., Polonskaya, Y. V., Stakhneva, E. M., Volkova, M. V., Kurguzov, A. V., ... & Ragino, Y. I. (2021). Associations of antioxidant enzymes with the concentration of fatty acids in the blood of men with coronary artery atherosclerosis. Journal of Personalized Medicine, 11(12), 1281.doi:10.3390/jpm11121281.
Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka, N. (2013). Potential applications of antioxidants–A review. Journal of pharmacy research, 7(9), 828-835.doi:10.1016/j.jopr.2013.10.001.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.doi:10.1016/S0076-6879(99)99017-1.
Sudhir, S., Arunprasath, A., & Vel, V. S. (2022). A critical review on adaptations, and biological activities of the mangroves. Journal of Natural Pesticide Research, 1, 100006.doi:10.1016/j.napere.2022.100006.
Taghizadeh, M. & Jalili, S. (2024). Phytochemical Content, Antioxidant Properties, and Antibacterial Activities of Centella Asiatica L.” Natural Product Research 38(20), 3693–98. doi:10.1080/14786419.2023.2258439.
Tewtrakul, S., Cheenpracha, S., & Karalai, C. (2009). Nitric oxide inhibitory principles from Derris trifoliata stems. Phytomedicine, 16(6-7), 568-572. doi:10.1016/j.phymed.2008.12.015.
Thatoi, H., Behera, B. C., Mishra, R. R., & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 63(1), 1-19.doi:10.1007/s13213-012-0442-7.
Vo, Q. V., Nam, P. C., Thong, N. M., Trung, N. T., Phan, C. T. D., & Mechler, A. (2019). Antioxidant motifs in flavonoids: O–H versus C–H bond dissociation. ACS omega, 4(5), 8935-8942. doi:10.1021/acsomega.9b00677.
Wang, T. Y., Li, Q., & Bi, K. S. (2018). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian journal of pharmaceutical sciences, 13(1), 12-23.doi:10.1016/j.ajps.2017.08.004.
Yeshi, K., Crayn, D., Ritmejerytė, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313 . doi:10.3390/molecules27010313.
Yuvaraj, P., & Subramoniam, A. (2009). Hepatoprotective property of Thespesia populnea against carbon tetrachloride induced liver damage in rats. Journal of basic and clinical physiology and pharmacology, 20(2), 169-178. doi:10.3390/antiox9080732.
Zhu, P., Fan, L., Yan, X., & Li, J. (2024). Advances of α-linolenic acid: Sources, extraction, biological activity and its carrier. Trends in Food Science & Technology, 152, 104676. doi:10.1016/j.tifs.2024.104676.
Section
Research Articles

How to Cite

Bioactive seed oils of mangrove associates: Phytochemical profiling, antioxidant activity and in vitro cytotoxicity studies. (2025). Journal of Applied and Natural Science, 17(3), 1362-1372. https://doi.org/10.31018/jans.v17i3.6823