Potassium sulfate inducing antioxidant system to alleviate salinity stress in Mung bean (Vigna radiata L) cuttings: A biochemical and physiological study
Article Main
Abstract
Salinity stress has a detrimental effect on plant growth and yield. Assessing abnormalities in physiological and biochemical pathways is crucial for accurately estimating the situation. The present study aimed to verify the potential of potassium sulfate in alleviating oxidative stress, as measured by rooting and enzymatic antioxidant responses, in Mung bean (Vigna radiata L.) cuttings, using this experimental system. Potassium sulfate (K2SO4) was used at an optimal concentration (15 mM L-1) to alleviate sodium chloride (NaCl) toxicity 50 mM L-1 in terms of rooting response. K2SO4 was supplied in pre-, post- and simultaneous treatment with NaCl. The simultaneous treatment was found to be the best for alleviating sodium toxicity. Toxicant sodium and K2SO4 on enzymatic and non-enzymatic were studied. The results showed that toxic concentrations of NaCl caused a decline in rooting response and root dry biomass, as well as, nonenzymetic antioxidants: glutathione (GSH) (24.81%) and ascorbic acid (ASA) (52.03%), whereas malondialdehyde (MDA) leave contents, were increased (138.18%). Meanwhile, enzymetic antioxident: superoxide dismutase (SOD) catalase (CAT) and ascorbate peroxidase (APX) increased at level of 119.83%, 30.25% and 154.67%, respectively compared to d/H2O. However, indole acetic acid oxidase (IAA) increased at level of 94.99% compared to d/H2O. While treatment of mung bean cuttings with K2SO4 (2 mM/L) as a therapeutic way resulted in a contrasting trend, that caused an increase of rooting response and dry weight. The GSH and ASA increased, whereas MDA decreased at a reduction 90.17%. In addition to decrease of SOD, CAT, APX and IAA-oxidase activities at a reduction 148.09%, 12.24%, 92.39% and 126.13%, respectively. Thus, K2SO4 is a promising therapeutic management for improving the tolerance of plants under NaCl stress.
Article Details
Article Details
Antioxidant enzyme, Mung bean cutting, Oxidative stress, Potassium sulfate, Salinity stress, Sodium chloride toxicity
Adhikari, B., Dhungana, S.K., Kim, I.D. & Shin, D.H. (2020). Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences, 19(4), pp.261-269. doi.org/10.1016/j.jssas.2019.02.001
Aebi, H., 1974. Catalase. In Methods of Enzymatic Analysis(pp. 673-684). Academic press.
Ahanger, M.A., Qin, C., Begum, N., Maodong, Q., Dong, X.X., El-Esawi, M., El-Sheikh, M.A., Alatar, A.A. & Zhang, L. (2019). Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 19, pp.1-12. doi: 10.1186/s12870-019-2085-3
Ahmad, R., Hussain, S., Anjum, M. A., Khalid, M. F., Saqib, M., Zakir, I., Hassan,A., Fahad,S & Ahmad, S. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 191-205). Cham: Springer International Publishing. doi.org/10.1007/978-3-030-06118-0_8
Al Otaibi, F. A., Alghamdi, S. A., & Abo-Elyousr, K. A. (2024). The influence of salinity on plant growth and amendment strategies. Sohag Journal of Sciences, 9(3), 261-267. doi.org/10.21608/sjsci.2024.258471.1168
Alharbi, B. M., Elhakem, A. H., Alnusairi, G. S., Soliman, M. H., Hakeem, K. R., Hasan, M. M., & Abdelhamid, M. T. (2021). Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ, 67(4), 208-220. doi.org/10.17221/659/2020-PSE
Almeida, D. M., Oliveira, M. M., & Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and molecular biology, 40(1 suppl 1), 326-345. doi.org/10.1590/1678-4685-GMB-2016-0106
Ashraf, M. P. J. C., & Harris, P. J. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. doi.org/10.1016/j.plantsci.2003.10.024
Ashraf, M. Y., Rafique, N., Ashraf, M., Azhar, N., & Marchand, M. (2013). Effect of supplemental potassium (K+) on growth, physiological and biochemical attributes of wheat grown under saline conditions. Journal of Plant Nutrition, 36(3), 443-458. doi.org/10.1080/01904167.2012.748065
Askari-Khorasgani, O., Rehmani, M. I. A., Wani, S. H., & Kumar, A. (2021). Osmotic stress: an outcome of drought and salinity. In Handbook of plant and crop physiology (pp. 445-464). CRC Press.. doi: 10.1201/9781003093640
Atta, K., Adhikary, S., Mondal, S., Mukherjee, S., Pal, A., Mondal, S., Jana, K. & Biswas, B. (2022). A review on stress physiology and breeding potential of an underutilized, multipurpose legume: Rice bean (Vigna umbellata). Developing climate resilient grain and forage legumes, 235-253. doi: 10.1007/978-981-16-9848-4_11
Beffa, R., Martin, H. V., & Pilet, P. E. (1990). In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiology, 94(2), 485-491. doi.org/10.1104/pp.94.2.485
Blakesley, D., Weston, G. D., & Hall, J. F. (1991). The role of endogenous auxin in root initiation: Part I: Evidence from studies on auxin application, and analysis of endogenous levels. Plant Growth Regulation, 10(4), 341-353.
Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: A threat to global food security. Agronomy Journal, 108(6), 2189-2200. doi.org/10.2134/agronj2016.06.0368
Chen, G. X., & Asada, K. (1992). Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant and Cell physiology, 33(2), 117-123. doi.org/10.1093/oxfordjournals.pcp.a078229
Coumans, J. V., Poljak, A., Raftery, M. J., Backhouse, D., & Pereg‐Gerk, L. (2009). Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics, 9(2), 335-349. doi.org/10.1002/pmic.200800251
da Rocha, I. T. M., Freire, F. J., de Oliveira, E. C. A., de Souza, E. R., dos Santos Freire, M. B. G., Neto, D. E. S., & da Silva, A. V. (2019). Salt effect of potassium fertilizer on productivity and technological quality of sugarcane. Australian Journal of Crop Science, 13(9), 1552-1560.
Food and Agricultural Organization (FAO). (2015). The State of Food and Agriculture Social Protection and Agriculture: Breaking the Cycle of Rural Poverty.
Ghosh, S., Mitra, S., & Paul, A. (2015). Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid. The Scientific World Journal,(1), 858016. doi.org/10.1155/2015/858016
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi.org/10.1016/j.plaphy.2010.08.016
Gong, Y., Rao, L., & Yu, D. (2013). Abiotic stress in plants. In Agricultural chemistry. IntechOpen. Doi.org/10.5772/55865.
Grattan, S. R., & Grieve, C. M. (1992). Mineral element acquisition and growth response of plants grown in saline environments. Agriculture, Ecosystems & Environment, 38(4), 275-300. doi.org/10.1016/0167-8809(92)90151-Z
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014(1), 701596..doi:10.1155/2014/701596
Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita,M & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi.org/10.3390/antiox9080681
Hasanuzzaman, M., Nahar, K., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2018). Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiology and Molecular Biology of Plants, 24(6), 993-1004. doi.org/10.1007/s12298-018-0531-6
He, M., He, C. Q., & Ding, N. Z. (2018). Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 9, 1771..doi: 10.3389/fpls.2018.01771
Hess, C. E. (1961). The mung bean bioassay for detection of root promoting substances. Plant Physiol, 36(1).
Hussain, S., Hussain, S., Ali, B., Ren, X., Chen, X., Li, Q., Saqib, M., & Ahmad, N. (2021). Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond. Plant Physiology and Biochemistry, 160, 239-256.. doi: 10.1016/j.plaphy.2021.01.029.
Jaiswal, D. K., Verma, J. P., Prakash, S., Meena, V. S., & Meena, R. S. (2016). Potassium as an important plant nutrient in sustainable agriculture: a state of the art. Potassium solubilizing microorganisms for sustainable agriculture, 21-29. doi.org/10.1007/978-81-322-2776-2_2
Jana, S., & Choudhuri, M. A. (1982). Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany, 12, 345-354. doi.org/10.1016/0304-3770(82)90026-2
Javed, S. A., Jaffar, M. T., Shahzad, S. M., Ashraf, M., Piracha, M. A., Mukhtar, A., Rahman, S.U., Almoallim, H. S., Ansari, M. J., & Zhang, J. (2024). Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environmental and Experimental Botany, 226, 105836. doi.org/10.1016/j.envexpbot.2024.105836
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. doi.org/10.3390/ijms22094642
Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., Gautam,V., Kaur, R., & Bhardwaj, R. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 3, 13.. doi: 10.3389/fenvs.2015.00013
Kausar, A., & Gull, M. (2014). Effect of potassium sulphate on the growth and uptake of nutrients in wheat (Triticum aestivum L.) under salt stressed conditions. Journal of Agricultural Science, 6(8), 101. doi:10.5539/jas.v6n8p101
Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy, 9(11), 687. doi.org/10.3390/agronomy9110687
Khan, N., Syeed, S., Masood, A., Nazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), e1-e1. doi.org/10.4081/pb.2010.e1
Kumar, S. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. International Journal of Food Science and Agriculture, 4(4). dx.doi.org/10.26855/ijfsa.2020.12.002
Kumari, S., Chhillar, H., Chopra, P., Khanna, R. R., & Khan, M. I. R. (2021). Potassium: A track to develop salinity tolerant plants. Plant Physiology and Biochemistry, 167, 1011-1023. doi.org/10.1016/j.plaphy.2021.09.031
Kundu, P., Gill, R., Ahlawat, S., Anjum, N. A., Sharma, K. K., Ansari, A. A., Hasanuzzaman, M., Ramakrishna, A., Chauhan, N., Tuteja, N.,& Gill, S. S. (2018). Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 151-220). Academic Press... DOI: 10.1016/B978-0-12-813066-7.00010-3.
Lu, K., Guo, Z., Di, S., Lu, Y., Muhammad, I. A. R., Rong, C., Li, W.,& Ding, C. (2023). OsMFT1 inhibits seed germination by modulating abscisic acid signaling and gibberellin biosynthesis under salt stress in rice. Plant and Cell Physiology, 64(6), 674-685..doi:10.1093/pcp/pcad029
Luo, M. B., & Liu, F. (2011). Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. Journal of Experimental Marine Biology and Ecology, 409(1-2), 223-228.
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474.
Marques DJ, Broetto F, Ferreira MM, Lobato AKS, Ávila FW, Pereira FJ (2014) Effect of potassium sources on the antioxidant activity of eggplant. Rev Bras Cienc Solo. 38:1836- 1842.
Marschner, H., 1995. Mineral Nutrition of Higher Plants, second ed. Academic Press, New York.
Mäser, P., Gierth, M., & Schroeder, J. I. (2002). Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 247(1), 43-54. doi.org/10.1023/A:1021159130729
Merhij, E.I. & Shaheed, A.I., (2016). Effect of Sodium Toxicity on the cellular membranes Integrity and Some Physiological Parameters in Cucumis sativus L. Cuttings. Euphrates Journal of Agricultural Science, 8(3).
Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19.
Mudgal, V., Madaan, N., & Mudgal, A. (2010). Biochemical mechanisms of salt tolerance in plants: a review. doi: 10.3923/ijb.2010.136.143
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681.
Munns, R., (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), pp.645-663.. doi: 10.1111/j.1469-8137.2005.01487.x
Radasai, N., Ketrot, D., Tawornpruek, S., Inboonchuay, T., & Wongsuksri, A. (2024). Effects of foliar potassium supplementation on yield and nutrient uptake of plant sugarcane. Sugar Tech., 26(6), 1665-1675.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73-82. doi.org/10.1080/174291 45.2018.1424355
Riddles, P. W., Blakeley, R. L., & Zerner, B. (1979). Ellman's reagent: 5, 5′-dithiobis (2-nitrobenzoic acid)—a reexamination. Analytical Biochemistry, 94(1), 75-81. doi.org/10.1016/0003-2697(79)90792-9
Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. doi: 10.1016/j.copbio.2013.12.004
Scandalios, J. G., Guan, L., & Polidoros, A. N. (1997). Catalases in plants: gene structure, properties, regulation, and expression. cold Spring Harbor monograph series, 34, 343-406.
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43-53). Cham: Springer International Publishing. doi.org/10.1007/978-3-319-96190-3
Shalata, A., & Neumann, P. M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52(364), 2207-2211. doi.org/10.1093/jexbot/52.364.2207
Shao, H. B., Chu, L. Y., Wu, G., Zhang, J. H., Lu, Z. H., & Hu, Y. C. (2007). Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B: Biointerfaces, 54(2), 143-149. /doi.org/10.1016/j.colsurfb.2006.09.004
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012(1), 217037. /doi.org/10.1155/2012/217037
Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New phytologist, 221(3), 1197-1214.doi.org/10.1111/nph.15488
Taha, R., Seleiman, M. F., Alotaibi, M., Alhammad, B. A., Rady, M. M., & HA Mahdi, A. (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy, 10(11), 1741. Doi.org/10.3390/agronomy10111741
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. doi.org/10.1093/aob/mcg058
Wang, L., Wei, S., Chen, J., Zhang, Y., & Huang, D. (2013). Regulation of the inward rectifying K+ channel MIRK and ion distribution in two melon cultivars (Cucumis melo L.) under NaCl salinity stress. Acta Physiologiae Plantarum, 35(9), 2789-2800. doi.org/10.1007/s11738-013-1311-0
Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244. dx.doi.org/10.4067/S0718-95162012000200003
Wu, Y., Wang, X., Zhang, L., Zheng, Y., Liu, X., & Zhang, Y. (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 14, 1163451. doi.org/10.3389/fpls.2023.1163451
Yan, Z., Ming, D. I. A. O., Jin-xia, C. U. I., Xian-jun, C., Ze-lin, W. E. N., & Hui-ying, L. I. U. (2018). Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. Journal of Integrative Agriculture, 17(10), 2257-2272.. doi: 10.1016/S2095-3119 (18)62068-4
Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53(1), 247-273. doi.org/10.1146/annurev.arplant.53.0914 01.143329

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



