Article Main

Shahnaz Anjam Nazia Kouser Ali Asghar Shah

Abstract

The Himalayan region holds significant ecological importance and plays a crucial role in biomonitoring ecosystems. The present study to investigate the Effects of various factors, including latitude, climate, and vegetation, on the diversity and geographic distribution patterns of soil-inhabiting nematodes in the Pir Panjal range of the Jammu and Kashmir Himalayas, India.  Soil Samples were collected from forests, agricultural fields, and grasslands in temperate and subtropical regions, along an altitude gradient (1000 to 2300m) and a latitudinal gradient (33º 32 'N to 33º 48' N). A Significant variation among different vegetation types and number of genera and abundance of nematodes was determined by Regression Analysis and A one-way ANOVA followed by T test. A Correlation Coefficient Analysis between various ecological indices like Maturity Index (MI), Diversity Indices (Shannon-Weaver, Simpson, Hills N1 and N2), Trophic structure Indices (Enrichment Index, Structure Index) and latitude were performed. The Maturity Index decreased (r= -0.645) in higher latitudes, accompanied by an increase in microbial activity, indicating a less disturbed environment. The higher values of the Enrichment Index (EI) and Structure Index (SI) at lower latitudes indicated higher opportunists and an indicator of food web state, respectively. The Linear regression model showed a significant relationship between soil nematode trophic guilds and latitude and precipitation. It reflects higher nutrient mineralization and productivity in areas with higher precipitation. The highest mean value of nematode abundance in temperate region and genera in subtropical areas explains the trophic guild status.


 

Article Details

Article Details

Keywords

Biogeography, Diversity indices, Enrichment index, Genera richness, Soil nematodes

References
Afzal, S., Nesar, H., Imran, Z. & Ahmad, W. (2021). Altitudinal gradient affect abundance, diversity and metabolic footprint of soil nematodes in Banihal-Pass of Pir-Panjal Mountain range. Sci. Rep., 11, 16214. doi: 10.1038/s41598-021-95651.
Albright, M. B. N., Johansen, R., Thompson, J., Lopez, D., Gallegos-Graves, L. V., Kroeger, M. E., et al. (2020). Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front. Microbiol., 11. doi: 10.3389/fmicb.2020.542220.
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19. https://doi.org/10.1007/BF00324627.
Bongers, T. & Bongers, M. (1998). Function diversity of nematodes. Applied. Soil Ecology, 10: 239–251. https://doi.org/10.1016/S0929-1393(98)00123-1.
Chen, J., Zhang, Y., Liu, C. & Huang, L. (2024). Distribution pattern of soil nematode communities along an elevational gradient in arid and semi-arid mountains of Northwest China. Front. Plant Sci., 15:1466079. doi: 10.3389/fpls.2024.1466079
Chen, X.Y., Daniell, T.J., Neilson, R., O'Flaherty, V. & Griffiths, B.S. (2014). Microbial and macrofaunal communities in phosphorus limited, grazed grassland change composition but maintain homeostatic nutrient stoichiometry. Soil Biology and Biochemistry, 75: 94–101. https://doi.org/10.1016/j.soilbio.2014.03.024.
Choudhary, F., Bhardwaj, A., Sayeed, I., Rather, S. A., Khan, M. A. H. & Shah, A. A. (2023). Elevational patterns of soil nematode diversity, community structure and metabolic footprint in the Trikuta mountains of Northwestern Himalaya. Front. For. Glob. Change, 6, 1135219. doi: 10.3389/ffgc.2023.1135219.
Clinton N. Jenkinsa,1, Stuart L. Pimmb & Lucas N. Joppac. (2013). Global patterns of terrestrial vertebrate diversity and conservation, PNAS Plus, E2602–E2610.https://doi.org/10.1073/pnas.1302251110.
Cobb, N.A. (1918). Estimating the nema populations of soil. USDA Technical Circular 1: 48.
Coleman, D. C., Geisen, S. & Wall, D. H. (2024). Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil microbiology, ecology and biochemistry (pp. 131-159). Elsevier. https://doi.org/10.1016/B978-0-12-822941-5.00005-3.
David C.L. Orme, Richard G. Davies, Valerie A. Olson, Gavin H. Thomas, Tzung-Su Ding, PamelaC. Rasmussen, Robert S. Ridgely, Ali J. Stattersfield, Peter M. Bennett, Ian P. F. Owens1, Tim M.Blackburn & Kevin J. Gaston, (2006). Global patterns of geographic range size in birds. PLoS Biology, 4, e208. https://doi.org/10.1371/journal.pbio.0040208.
Ferris, H., Bongers, T. & de Goede, R.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13–29. https://doi.org/10.1016/S0929-1393(01)00152-4.
Ferris, H & Matute, M.M. (2003). Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology, 93-110. https://doi.org/10.1016/S0929-1393(03)00044-1.
Gomes, G.S., Huang, S.P. & Cares, J.E. (2003). Nematode community, trophic structure and population fluctuation in soybean fields. Fitopatologia Brasileira, 258-266.
Grilli, J. (2020). Macroecological laws describe variation and diversity in microbial communities. Nat. Commun., 11, 4743. https://doi.org/10.1038/s41467-020-18529-y.
Guo, X., Endler, A., Poll, C., Marhan, S. & Ruess, L. (2021), Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. Agr. Ecosyst. Environ., 316. Article 107467, 10.1016/j.ag ee.2021.107467.
Homet, P., Ourcival, J. M., Gutirrez, E., Domínguez, J., Matías, L., Godoy, O. & Gómez, A. L. (2023). Short-and long-term responses of nematode communities to predicted rainfall reduction in Mediterranean forests. Soil Biol. Biochem., 179 Article 108974, 10.1016/j.soilbio.2023. 108974
Hooper, D.J., Hallmann, J. & Subbotin, S.A. (2005). Methods for extraction, processing and detection of plant and soil nematodes. In Plant parasitic nematodes in subtropical and tropical agriculture, CABI Publishing Wallingford UK: pp. 53-86.
Jetz, W. (2006). The geographic pattern of species richness in birds, The relative roles of evolutionary and environmental drivers. Journal of Ornithology, 33-33.
Kalkhorana, S.S. & Ahangar, A.G. (2014). Nematode as a soil biodiversity indicator. Agricultural Advances, 67-73.
Kandji, S.T., Ogol, C.K.P.O.& Albrecht, A. (2001). Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18, 143–157. https://doi.org/10.1016/S0929-1393(01)00157-3.
Kashyap, P., Afzal, S., Rizvi, A. N., Ahmad, W., Uniyal, V. P. & Banerjee, D. (2022). Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India. Sci. Rep., 12, 1–13. doi: 10.1038/ s41598-022-05472-9
Keshava M. M. V. & Shwetha A., (2023). Community structure and functional diversity of soil nematodes from Udupi district, Karnataka, India. (2023). Journal of Applied and Natural Science, 15(4), 1484-1498. https://doi.org/10.31018/jans.v15i4.4972.
Kharkwal, G., & Rawat, Y. S. (2010). Structure and composition of vegetation in subtropical forest of Kumaun Himalaya. African Journal of Plant Science, 116-121.
Landesman, W.J., Treonis, A.M. & Dighton, J. (2011). Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54: 87–91. https://doi.org/10.1016/j.pedobi.2010.1 0.002.
Lavelle, P. & Spain, A.V. (2001). Soil Ecology. Kluwer Academic Publishers, New York. https://doi.org/10.1007/0-306-48162-6.
Li, J., Peng, P. & Zhao, J. (2020). Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecol. Lett. 2, 33–39. https://doi.org/10.1007/s42832-019-0019-5
Li, Y., Schuldt, A., Ebeling, A. et al. (2024). Plant diversity enhances ecosystem multifunctionality via multitrophic diversity. Nat. Ecol. Evol., 8, 2037–2047. https://doi.org/10.1038/s41559-024-02517-2
Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Q. (2019). Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadica sebifera) in China. Plant Ecol., 220, 965–976. doi: 10.1007/s11258-019-00966-5.
Ma, J. Luan, H. Wang, P. Wu, X. Ye, Y. Wang, A. Ming & S. Liu (2023). Nitrogen-fixing tree species rather than tree species diversity shape soil nematode communities in subtropical plantations. Geoderma, 436 Article 11 6561, 10.1016/ j.geoderma.2023.116561.
Maraun, M., Schatz, H.& Scheu, S. (2007). Awesome or ordinary, Global diversity patterns of oribatid mites. Ecography., 30, 209–216.
Nahmani, J. &Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 297-300. https://doi.org/10.1016/S1164-5563(02)01169.
Nicholas J. G, Marti J. Anderson, Hector T. Arita, Anne Chao, Robert K. Colwell, Sean R.Connolly, David J. Currie, Robert R. Dunn, Gary R. Graves, Jessica L. Green, John-Arvid Grytnes,Yi-Huei Jiang, Walter Jetz, S. Kathleen Lyons, Christy M. McCain, Anne E. Magurran, Carsten Rahbek,Thiago F.L.V.B. Rangel, Jorge Sobero ´n, Campbell O. Webb & Michael R. Willig. (2009). Patterns and causes of species richness: a general simulation model for Macroecology. Ecology, 12: 873–886. DOI: 10.1111/j.1461-0248.2009.01353.
Nico E. M., Bowker A, James B. Grace & Jeff R. Powell (2015). From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology, Pedobiologia, 58, 2–3, 65-72, ISSN 0031-4056, https://doi.org/10.1016/j.pedobi.2015.03.002.
Nielsen, U. N., Ayres, E., Wall, D. H., Li, G., Bardgett, R. D., Wu, T., & Garey, J. R. (2014). Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23, 968–978.  https://doi.org/10.1111/geb.12177.
Oka, Y. (2019). Survival of Meloidogyne javanica during the summer season under semiarid conditions. Eur. J. Plant Pathol., 155, 917–926. https://doi.org/10.1007/s10658-019-01823-x
Omid, P. & Hossein, R. S. (2015). Geographical patterns of species richness and beta diversity of Laventiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. Journal of Insect Conservation, Springer International Publishing Switzerland, 19, 729–739. https://doi.org/10.1007/s10841-015-9795-0.
Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture Ecosystem and Environment, 323-333. https://doi.org/10.1016/j.agee.2004.02.002.
Porazinska, D.L., Giblin-Davis, R.M., Powers, T.O. & Thomas, W.K. (2012). Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One 7, e44641. https://doi.org/10.1371/journal.pone.004 641.
Pothula S. K., Grewal P. S., Auge R. M., Saxton A. M. & Bernard E. C., (2019). Agricultural intensification and urbanization negatively impact soil nematode richness and abundance: a meta-analysis. J. Nematol., 51: 1–17. 10.21307/jofnem-2019-011 
Preez, D. G., Daneel, M., Goede, Toit, M., Ferris, H., Fourie, H., Geisen, S., Duarte, T., Korthals, G., Moreno, S. & Schmidt, J., (2022), Nematode-based indices in soil ecology: Application, utility, and future directions, Soil Biology and Biochemistry, 169, 108640, ISSN 0038-0717, https://doi.org/10.1016/j.soilbio.2022.108640.
Ruan, W.B., Sang, Y., Chen, Q., Zhu, X., Lin, S. & Gao, Y.B. (2012). The response of soil nematode community to nitrogen, water, and grazing history in the Inner Mongolian steppe, China. Ecosystems, 15, 1121–1133.
Sattler, T., Duelli, P., Obrist, M.K.; Arlettaz, R. & Moretti, M. (2010). Response of arthropod species richness and functional groups to urban habitat structure and management. Landscape Ecology, 941-954. https://doi.org/10.1007/s10980-010-9473-2.
Shannon, C.E. & Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
Sharma, R., Vishaw V., Singh, M., Sharma, M. K., Panotra, N., Sharma, C., & Kumar, D., (2020). “Analyzing the Effect of Lockdown on Weather Parameters Amid COVID-19 Pandemic of Mid Hill Region of Rajouri District of Jammu Kashmir, Union Territory, India”. International Journal of Environment and Climate Change, 10 (9):133-53. https://doi.org/10.9734/ijecc/2020/v10i930236.
Shen, F. Y., Chen, C., Zhang, Y., Ji, L., Liu, H. F., & Yang, L. X. (2023). Spatiotemporal distribution patterns of soil nematodes along an altitudinal gradient in the cold temperate zone of China. Glob. Ecol. Conserv., 47, e02649. doi: 10.1016/ j.gecco.2023.e02649
Shoemaker W.R., Sanchez A. & Grilli J. (2025). Macroecological patterns in experimental microbial communities. PLOS Comput. Biol., 8;21(5): e1013044. doi: 10.1371/journal.pcbi.1013044. PMID: 40341906; PMCID: PMC12112161.
Simon N. Stuart, Janice S. Chanson, Neil A. Cox, Bruce E. Young, Ana S. L. Rodrigues, Debra L. Fischman & Robert W. Waller. (2004). Status and Trends of Amphibian Declines and Extinctions Worldwide. Science, 306(5702): 1783-1786.  DOI: 10.1126/science.1103538.
Taylan, C., C. Igdem, G., Ugur, G., Tange, A. D., & Bora, K. M. (2021). Biodiversity and distribution of soil nematodes in Mount Ararat, Turkey. Russ. J. Nematol., 29, 31 48. doi: 10.24411/0869-6918-2021-10004
Tedersoo, L., Bahram, M., Toots, M., Diédhiou, A.G., Henkel, T.W., Kjøller, R., Morris, M.H., Nara, K., Nouhra, E., Peay, K.G., Põlme, S., Ryberg, M., Smith, M.E.& Kõljalg, U. (2012). Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, (6) 21 4160–4170.
Tong, F. C., Xiao, Y. H. & Wang, Q. L. (2010). Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China. J. Forestry Res., 21, 93 98. doi: 10.1007/s11676-010-0016-0
Veen, G. F., De Long, J. R., Kardol, P., Sundqvist, M. K., Snoek, L. B. & Wardle, D.A. (2017). Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599. doi: 10.1111/oik.04158
Wagg C., Bender S.F., Widmer F. & Vander Heijden M.G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci., U S A, 8;111(14):5266-70. doi: 10.1073/pnas.1320054111. Epub 2014 Mar 17. PMID: 24639507; PMCID: PMC3986181.
Woodford, C. (2003). Arctic Tundra and Polar Deserts (Biomes Atlases). Raintree Publishers. 25–40.
Wu, J.S., Tong, C.L. & Liu, S.L. (2004). Responses of soil organic carbon to global climate changes in cultivated soils in the subtropical and the Loess Plateau regions. Advances in Earth Sciences, 19: 131–137.
Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. (2011). Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences, USA, 108: 17720– 17725.
Yeates, G. W. (1979). Soil nematodes in terrestrial ecosystems. Journal of. Nematology, 11, 213229.
Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. & Georgieva, S. S. (1993). Feeding habits of soil nematode families and genera – an outline for soil ecologists. Journal of Nematology, 25, 315–331.
Yu, H.; Wang, L.; Yang & Z.; Guo, L. (2023). Divergent response of leaf unfolding to climate warming in subtropical and temperate zones. Agric. For. Meteorol., 15, 103625.
Yumei H., Weichao X., Feifei X., Yi Z., Danju Z., Jiujin X., Huixing S.& Wenfeng X., (2025). Anthropogenic disturbances shape soil nematode communities in urban green spaces. CATENA 250.https://doi.org/10.1016/j.catena.2025.108790.
Zhang, X., Ferris, H., Mitchell, J. & Liang, W., (2017). Ecosystem services of the soil food web after long-term application of agricultural management practices Soil Biol. Biochem., 111, pp. 36-43, 10.1016/j.soilbio.20 17.03.017
Section
Research Articles

How to Cite

Macro-ecology and biogeography of soil nematodes in Pir Panjal range of Jammu and Kashmir Himalaya, India. (2025). Journal of Applied and Natural Science, 17(4), 1509-1519. https://doi.org/10.31018/jans.v17i4.6787