A review on aquatic ecotoxicity of profenofos with reference to environmental fate and impact on fish
Article Main
Abstract
Profenofos (PFF), a widely used organophosphorus insecticide in agriculture, has raised serious environmental concerns due to its persistence and toxicity in aquatic ecosystems. This review critically examines the environmental fate, transformation pathways, and ecotoxicological effects of PFF, with a particular focus on fish. PFF enters aquatic environments through runoff, leaching, and direct application, where it undergoes hydrolysis and microbial degradation, producing metabolites such as 4-bromo-2-chlorophenol and dichlorvos. These compounds exhibit bioaccumulative and toxic properties, affecting key physiological systems in aquatic organisms. As sensitive bioindicators, fish experience a range of toxic effects, including oxidative stress, neurotoxicity, impaired respiration, reproductive dysfunction, and behavioral anomalies, even at sublethal concentrations. The compound’s potential for biomagnification poses risks to higher trophic levels, including piscivorous birds and humans. This review identifies neurotoxicity, reproductive failure, and metabolic disruption in fish as the most prominent adverse outcomes of PFF exposure. However, limited data on chronic low-dose exposure, trophic transfer dynamics, and endocrine disruption mechanisms represent key knowledge gaps that require further investigation. Despite existing regulations, gaps persist in long-term monitoring, risk assessment, and identifying safe alternatives. This review emphasises the urgent need for integrated pest management (IPM), enhanced pesticide formulations, and stricter environmental policies to mitigate the ecological impacts of PFF and protect aquatic biodiversity.
Article Details
Article Details
Organophosphorus, Profenofos, Aquatic ecosystem, Invertebrates, Fish
Al-Emran, M., Hasan, N. A., Khan, M. P., Islam, S. M. M., Bashar, A., Zulfahmi, I., Shahjahan, M., & Sumon, K. A. (2022). Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. Environmental Science and Pollution Research, 29(19), 29049–29061. https://doi.org/10.1007/s11356-021-17972-8
Atindra, K. P., N., S. N., & Sunil, P. T. (2014). Evaluation of genotoxicity of profenofos to freshwater fish Channa punctatus (Bloch) using the micronucleus assay. African Journal of Biotechnology, 13(39), 3985–3988. https://doi.org/10.5897/ajb2014.14095
Bakhshwan, S., Hamed, H., Marzouk, M., & Hanna, M. (2009). Some investigations on the clinical and biochemical alterations associated with dizinon toxicity in Clarias gariepinus. Egyptian Journal of Aquatic Biology and Fisheries, 13(2), 173–197. https://doi.org/10.21608/ejabf.2009.2039
Begum, G., Venkateswara Rao, J., & Srikanth, K. (2006). Oxidative stress and changes in locomotor behavior and gill morphology of Gambusia affinis exposed to chromium. Toxicological and Environmental Chemistry, 88(2), 355–365. https://doi.org/10.1080/02772240600635985
Boudh, S., & Singh, J. S. (2018). Pesticide contamination: Environmental problems and remediation strategies. In Emerging and Eco-Friendly Approaches for Waste Management (pp. 245–269). Springer. https://doi.org/10.1007/978-981-10-8669-4_12
Cáceres, T., Megharaj, M., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2010). Fenamiphos and related organophosphorus pesticides: Environmental fate and toxicology. In Reviews of Environmental Contamination and Toxicology (Vol. 205). Springer. https://doi.org/10.1007/978-1-4419-5623-1_3
Chagnon, M., Kreutzweiser, D., Mitchell, E. A. D., Morrissey, C. A., Noome, D. A., & Van Der Sluijs, J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 22(1), 119–134. https://doi.org/10.1007/s11356-014-3277-x
Dadson, O. A., Ellison, C. A., Singleton, S. T., Chi, L. H., McGarrigle, B. P., Lein, P. J., Farahat, F. M., Farahat, T., & Olson, J. R. (2013). Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. Toxicology, 306, 35–39. https://doi.org/10.1016/j.tox.2013.01.023
Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A. G., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38. https://doi.org/10.1007/s13593-021-00689-w
Eriksson, J. (2019). Toxicity bioassays with insecticide formulations used for control of Spodoptera frugiperda ( Lepidoptera : Noctuidae ) (Issue May). North-West University (South Africa.
Fucic, A., Duca, R., Galea, K. S., Maric, T., Garcia, K., Bloom, M., Andersen, H. R., & Vena, J. (2021). Reproductive health risks associated with occupational and environmental exposure to pesticides. International Journal of Environmental Research and Public Health, 18(12), 6576. https://doi.org/10.3390/ijerph18126576
Georgieva, E., Yancheva, V., Stoyanova, S., Velcheva, I., Iliev, I., Vasileva, T., Bivolarski, V., Petkova, E., László, B., Nyeste, K., & Antal, L. (2021). Which is more toxic? Evaluation of the short-term toxic effects of chlorpyrifos and cypermethrin on selected biomarkers in common carp (cyprinus carpio, linnaeus 1758). Toxics, 9(6), 125. https://doi.org/10.3390/toxics9060125
Ghafarifarsani, H., Fazle Rohani, M., Raeeszadeh, M., Ahani, S., Yousefi, M., Talebi, M., & Sazzad Hossain, M. (2024). Pesticides and heavy metal toxicity in fish and possible remediation - a review. Annals of Animal Science, 24(4), 1007–1024. https://doi.org/10.2478/aoas-2024-0012
Ghazala, G., Mahboob, S., Al-Ghanim, K. A., Sultana, S., Alkahem Al-Balawi, H. F., Sultana, T., Al-Misned, F., & Ahmed, Z. (2014). Profenofos-induced effect on esterase activity and protein content in liver, kidney, brain, blood, and muscles in Indian major carp. Toxicological and Environmental Chemistry, 96(4), 633–640. https://doi.org/10.1080/02772248.2014.963277
Irfan, S., & Alatawi, A. M. M. (2019). Aquatic Ecosystem and Biodiversity: A Review. Open Journal of Ecology, 09(01), 1–13. https://doi.org/10.4236/oje.2019.91001
Islam, S. M., Khan, M. M., Moniruzzaman, M., Mostakim, G. M., & Rahman, M. K. (2019). Recuperation patterns in fish with reference to recovery of erythrocytes in Barbonymus gonionotus disordered by an organophosphate. International Journal of Environmental Science and Technology, 16(11), 7535–7544. https://doi.org/10.1007/s13762-019-02425-0
Ismail, I., & Khalil, N. (2020). Thermal and photolysis degradation of three profenofos formulations. Egyptian Journal of Agricultural Research, 98(2), 348–358. https://doi.org/10.21608/ejar.2020.122588
Ismail, M., Ali, R., Ali, T., Waheed, U., & Khan, Q. M. (2009). Evaluation of the acute toxicity of profenofos and its effects on the behavioral pattern of fingerling common carp (Cyprinus carpio L., 1758). Bulletin of Environmental Contamination and Toxicology, 82(5), 569–573. https://doi.org/10.1007/s00128-009-9670-3
Janaki Devi, V., Nagarani, N., Yokesh Babu, M., Vijayalakshimi, N., & Kumaraguru, A. K. (2012). Genotoxic effects of profenofos on the marine fish, Therapon jarbua. Toxicology Mechanisms and Methods, 22(2), 111–117. https://doi.org/10.3109/15376516.2011.603393
Khan, M. D. P. (2020). Effects Of Profenofos, An Organophosphate Pesticide, On The Hematological Parameters Of Nile Tilapia (Oreochromis niloticus). In Researchgate.Net (Issue March). Master Thesis. Department of fisheries management, Bangladesh Agricultural University.
Kumar, V., Sharma, N., Sharma, P., Pasrija, R., Kaur, K., Umesh, M., & Thazeem, B. (2023). Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicology and Applied Pharmacology, 474, 116623. https://doi.org/10.1016/j.taap.2023.116623
Kushwaha, M., Verma, S., & Chatterjee, S. (2016). Profenofos, an Acetylcholinesterase‐Inhibiting Organophosphorus Pesticide: A Short Review of Its Usage, Toxicity, and Biodegradation. Journal of Environmental Quality, 45(5), 1478–1489. https://doi.org/10.2134/jeq2016.03.0100
Li, J., Jin, Q., Li, S., Wang, Y., Yuan, S., Chen, S., Zhang, Z., & Liu, C. (2023). Effects of profenofos on the growth, reproduction, behavior, and gene transcription of Daphnia magna. Environmental Science and Pollution Research, 30(30), 74928–74938. https://doi.org/10.1007/s11356-023-27669-9
Maharajan, A., Usha, R., Ruckmani, P. S. P., Vijaykumar, B. S., Ganapiriya, V., & Kumarasamy, P. (2013). Sublethal Effect of Profenofos on Oxygen Consumption and Gill Histopathology of the Indian Major Carp, Catla Catla (Hamilton). International Journal of Pure and Applied Zoology, 1(1), 196–204. http://www.ijpaz.com
Mahmood, A., Ahmad, S., Akmal, H., & Shahzad, K. (2023). Evaluation of Hemotoxic, Hepatotoxic and Nephrotoxic Potential of Profenofos-based Insecticide in Freshwater Labeo rohita Fish at Low Concentrations. Pakistan BioMedical Journal, 32–40. https://doi.org/10.54393/pbmj.v6i11.920
Malinga, L. N., & Laing, M. D. (2024). A Review of Pesticides for the Control of Some Cotton Pests. Ann Agric Crop Sci, 9(1), 1148. https://doi.org/10.26420/annagriccropsci.2024.1148
Mathew, T. B., Varghese, T. S., Vijayasree, V., Pallavi Nair, K., Nithya, P. R., & Seena, S. M. (2024). Pesticide Residues in Indian Spices. In Handbook of Spices in India: 75 Years of Research and Development (pp. 955–1014). Springer. https://doi.org/10.1007/978-981-19-3728-6_17
McDaniel, K. L., & Moser, V. C. (2004). Differential profiles of cholinesterase inhibition and neurobehavioral effects in rats exposed to fenamiphos or profenofos. Neurotoxicology and Teratology, 26(3), 407–415. https://doi.org/10.1016/j.ntt.2004.01.001
Mohamed, A. A. R., Abdel Rahman, A. N., Mohammed, H. H., Ebraheim, L. L. M., Abo-ElMaaty, A. M. A., Ali, S. A., & Elhady, W. M. (2020). Neurobehavioral, apoptotic, and DNA damaging effects of sub-chronic profenofos exposure on the brain tissue of Cyprinus carpio L.: Antagonistic role of Geranium essential oil. Aquatic Toxicology, 224, 105493. https://doi.org/10.1016/j.aquatox.2020.105493
Moura, J. A. S., & Souza-Santos, L. P. (2020). Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. Aquatic Toxicology, 222, 105448. https://doi.org/10.1016/j.aquatox.2020.105448
Nagaraju, B., Rathnamma, V. V., & Asok, M. (2013). Toxicological effects of profenofos and carbosulfan on AAT (E. C. 2. 6. 1. 1) and ALAT (E. C. 2. 6. 1. 2) activity levels of freshwater fish Labeo rohita. International Journal of PharmTech Research, 5(3), 1307–1314.
Neupane, S. K., & Pokhrel, M. (2021). Impact of Agricultural Chemical Inputs on Human Health and Environment in Nepal. Agricultural Chemical Inputs, 66, 127.
Nwagu, N. L. N. (2023). Profenofos Pesticide: A Short Review Of It’s Ecological And Human Healthimpacts. Fans 1st Annual Conference, 146–155.
Paidi, M. K., Satapute, P., Haider, M. S., Udikeri, S. S., Ramachandra, Y. L., Vo, D. V. N., Govarthanan, M., & Jogaiah, S. (2021). Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers. Environmental Research, 200, 111368. https://doi.org/10.1016/j.envres.2021.111368
Pérez-Lucas, G., Vela, N., El Aatik, A., & Navarro, S. (2019). Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile. In Pesticides - Use and Misuse and Their Impact in the Environment. IntechOpen. https://doi.org/10.5772/intechopen.82418
Punniyakotti, P., Vinayagam, S., Rajamohan, R., Priya, S. D., Moovendhan, M., & Sundaram, T. (2024). Environmental fate and ecotoxicological behaviour of pesticides and insecticides in non-target environments: Nanotechnology-based mitigation strategies. Journal of Environmental Chemical Engineering, 12(5). https://doi.org/10.1016/j.jece.2024.113349
Radwan, M. A., Abu-Elamayem, M. M., Shiboob, M. H., & Abdel-Aal, A. (2005). Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology, 43(4), 553–557. https://doi.org/10.1016/j.fct.2004.12.009
Raj, A., Kumar, A., & Khare, P. K. (2024). The looming threat of profenofos organophosphate and microbes in action for their sustainable degradation. Environmental Science and Pollution Research, 31(10), 14367–14387. https://doi.org/10.1007/s11356-024-32159-7
Ray, S., & Shaju, S. T. (2023). Bioaccumulation of pesticides in fish resulting toxicities in humans through food chain and forensic aspects. Environmental Analysis Health and Toxicology, 38(3). https://doi.org/10.5620/eaht.2023017
Rico-Martínez, R., Rivera-Dávila, O. L., Santos-Medrano, G. E., Robles-Vargas, D., Carbajal-Hernández, A. L., Alvarado-Flores, J., Pérez-Legaspi, I. A., & Garza-León, C. V. (2022). Fate and adverse effects of pesticides in the environment. In Pesticides in the Natural Environment: Sources, Health Risks, and Remediation (pp. 65–119). Elsevier. https://doi.org/10.1016/B978-0-323-90489-6.00004-5
Russell, D. (2004). Integrated Pest Management for Insect Pests of Cotton in Less Developed Countries. In Insect Pest Management (pp. 141–179). Springer. https://doi.org/10.1007/978-3-662-07913-3_7
Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. Toxics, 9(8), 177. https://doi.org/10.3390/toxics9080177
Sandoval-Herrera, N., Mena, F., Espinoza, M., & Romero, A. (2019). Neurotoxicity of organophosphate pesticides could reduce the ability of fish to escape predation under low doses of exposure. Scientific Reports, 9(1), 10530. https://doi.org/10.1038/s41598-019-46804-6
Scholz, N. L., Fleishman, E., Brown, L., Werner, I., Johnson, M. L., Brooks, M. L., Mitchelmore, C. L., & Schlenk, D. (2012). A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. BioScience, 62(4), 428–434. https://doi.org/10.1525/bio.2012.62.4.13
Sharafeldin, K., Abdel-Gawad, H., Ramzy, E., Sweilum, M., & Nagy, M. (2014). Harmful impact of profenofos on the physiological parameters in Nile tilapia, Oreochromis niloticus. International Journal of Basic and Applied Sciences, 4(1), 19. https://doi.org/10.14419/ijbas.v4i1.3832
Sharma, S., & Mohanty, S. (2024). Insecticide Exposure May Pose a Threat to the Future Life Expectancy of Non-Targets: Inferred from Fly Research. In Toxicology International (Vol. 31, Issue 4). Toxicology International. https://doi.org/10.18311/ti/2024/v31i4/43730
Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., & Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology, 49(13), 1135–1187. https://doi.org/10.1080/10643389.2019.1565554
Singh, N. K., Sanghvi, G., Yadav, M., Padhiyar, H., Christian, J., & Singh, V. (2023). Fate of pesticides in agricultural runoff treatment systems: Occurrence, impacts and technological progress. Environmental Research, 237, 117100. https://doi.org/10.1016/j.envres.2023.117100
Singh, R., Verma, A. K., & Prakash, S. (2023). The web of life: Role of pollution in biodiversity decline. International Journal of Fauna and Biological Studies, 10(3), 49–52. https://doi.org/10.22271/23940522.2023.v10.i3a.1003
Stanley, J., & Preetha, G. (2016). Pesticide Toxicity to Fishes: Exposure, Toxicity and Risk Assessment Methodologies. Pesticide Toxicity to Non-Target Organisms, 411–497. https://doi.org/10.1007/978-94-017-7752-0_7
Sultana, Z., Khan, M. M., Mostakim, G. M., Moniruzzaman, M., Rahman, M. K., Shahjahan, M., & Islam, M. S. (2021). Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish. Environmental Science and Pollution Research, 28(16), 20659–20667. https://doi.org/10.1007/s11356-020-11944-0
Taha, A. (2022). Assessment of non-target toxicity of profenofos insecticide on the aquatic bird; the white egret, Egretta alba. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 263–276. https://doi.org/10.21608/ejabf.2022.228725
Tazeen, S., & Kulkarni, R. S. (2019). Histopathological Changes in the Kidney of the Freshwater Bronze Featherback Fish, Notopterus notopterus (Pallas, 1769) Exposed to Profenofos. Asian Journal of Research in Zoology, 2, 1–4. https://doi.org/10.9734/ajriz/2019/v2i230061
Tilak, K. S. (2019). Pesticide pollution in an aquatic environment: Alarming. In F. Pollution & A. Ecosystems (Eds.), Journal of Environmental Biology (Vol. 40, Issue 4, pp. 593–594). Academic Press. https://doi.org/10.1201/9781003130116-6
Tison, L., Beaumelle, L., Monceau, K., & Thiéry, D. (2024). Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research. Chemosphere, 357. https://doi.org/10.1016/j.chemosphere.2024.142036
Venkateswara Rao, J., Begum, G., Jakka, N. M., Srikanth, K., & Nageswara Rao, R. (2006). Sublethal effects of profenofos on locomotor behavior and gill architecture of the mosquito fish, Gambusia affinis. Drug and Chemical Toxicology, 29(3), 255–267. https://doi.org/10.1080/01480540600651543
Verma, S., & Chatterjee, S. (2021). Biodegradation of profenofos, an acetylcholine esterase inhibitor by a psychrotolerant strain Rahnella sp. PFF2 and degradation pathway analysis. International Biodeterioration and Biodegradation, 158, 105169. https://doi.org/10.1016/j.ibiod.2020.105169
Zhang, N., Yang, Y., Wang, X., Shi, T., Lv, P., Li, Q. X., & Hua, R. (2024). Myricetin Inhibits Photodegradation of Profenofos in Water: Pathways and Mechanisms. Agronomy, 14(2), 399. https://doi.org/10.3390/agronomy14020399

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)