Article Main

Khader Abd Khader Alaa Zanzal Raad

Abstract

Diabetic foot ulcers (DFUs) are a major cause of lower limb medical amputations and result in high healthcare expenses. In DFUs, Pseudomonas aeruginosa is significantly prevalent. The current study aims to determine the relationship between toxA and lasB virulence genes of Pseudomonas aeruginosa and antibiotic resistance.  Between September 2024 and February 2025, a total of 150 swabs were collected in this cross-sectional study from DFU patients of both sexes and varying ages who attended the American Medical Complex for treatment. The primary identification was performed using cultural characteristics and biochemical tests, and the definitive identification was achieved using the Vitek 2 compact system. Antimicrobial susceptibility tests were done by the Disk diffusion method. Of 150 samples, 53 (35.33%) were identified as P. aeruginosa. Among these, the prevalence of the toxA and lasB genes was 90.56% (48/53) and 88.68% (47/53), respectively. Ceftazidime was the most effective antibiotic, followed by netilmicin, meropenem, and imipenem. Carbenicillin was the least effective (100% resistance), followed by levofloxacin, piperacillin, ciprofloxacin, and cefepime.P. aeruginosa was prevalent in DFUs, accounting for 35.33% of the total sample size. Ceftazidime is the most effective antibiotic for treating P. aeruginosa infected DFUs, followed by netilmicin, meropenem, and imipenem. Carbenicillin is less effective. The toxA and lasB virulence genes was highly prevalent in P. aeruginosa isolates, leading to increased antibiotic resistance. This study provides insights into the virulence and resistance of P. aeruginosa in diabetic foot ulcers, emphasizing the need for molecular monitoring and customized antibiotic therapies to improve clinical management.


 

Article Details

Article Details

Keywords

Antibiotic susceptibility , Diabetic foot infections, Diabetic foot ulcer, Pseudomonas aeruginosa, Virulence genes

References
Abbas, S. K.,Omran, D. G. , & Abdulazeem, L. (2024). Bacterial Infections and Inflammatory Markers in Diabetic Foot Ulcers: Assessing the Roles of Staphylococcus aureus, Pseudomonas aeruginosa, Vascular Endothelial Growth Factor, and Interleukin-6. Medical Journal of Babylon, 21(2), 330-336.
Abd Al-doori, A.,Jasem, A. S. , & AL-Azzawie, A. F. (2020). Effects of Nd: Yag Laser on some virulence factor genes of Pseudomonas aeruginosa bacteria. Tikrit Journal of Pure Science, 25(2), 86-92.
Abd Al Zwaid, A. J. , & Al-Dahmoshi, H. O. M. (2022). Molecular detection of mexXY-oprM, mexPQ-opmE Efflux pumps in multi-drug resistant Pseudomonas aeruginosa isolates in patients referred to teaching hospitals in Babylon province, Iraq. Journal of Applied and Natural Science, 14(2), 426.
Al-Chalabi, F. A.,Abed, R. M.,Risan, M. H. , & Jabr, Y. D. (2024). Prevalence of Candida albicans Infection Among Diabetic Foot Ulcer Patients in Al-Yarmouk Teaching Hospital. Medical Journal of Babylon, 21(Suppl 1), S137-S140.
Al-Khashmani, A. J. K.,Salman, A. A. , & Raad, A. Z. (2021). Epidemiology of asymptomatic bacteriuria among diabetic patients in Tikrit City, Iraq. Iraq Medical Journal, 5(3), 94-97.
AL-Samaraey, A. A. A. , & Jafar, N. A.-H. (2021). Evaluation of Number of Virulence Factors and Antibiotic Resistance Patterns of Pseudomonas‎ aeruginosa isolated from wound and burn infections in Samarra city. Tikrit Journal of Pure Science, 26(6), 7-13.
Al-Shimmary, S. (2020). Molecular identification and prevalence of some virulence genes among Pseudomonas aeruginosa isolated from Iraqi patients. International Journal of Pharmaceutical Research, 1.
Al-Zwaid, A. J. A. , & Al-Dahmoshimoshi, H. O. M. (2022). Molecular investigation of Pseudomonas aeruginosa mexAB-oprM efflux pump genes from clinical samples and their correlation with antibiotic resistance. Journal of Applied & Natural Science, 14(1).
Al Abbas, L. A.,Khaddam, W. , & Shreibati, F. (2022). Investigating bacteria isolated from diabetic foot ulcers and studying their sensitivity to antibiotics–SYRIA. Bulletin of Pharmaceutical Sciences. Assiut, 45(1), 451-458.
Alhubail, A.,Sewify, M.,Messenger, G.,Masoetsa, R.,Hussain, I.,Nair, S. , & Tiss, A. (2020). Microbiological profile of diabetic foot ulcers in Kuwait. PloS one, 15(12), e0244306.
Alkhudhairy, M. K. , & Al-Shammari, M. M. M. (2020). Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New microbes and new infections, 35, 100661.
Bakker, K.,Apelqvist, J.,Schaper, N. C. , & Board, I. W. G. o. t. D. F. E. (2012). Practical guidelines on the management and prevention of the diabetic foot 2011. Diabetes/metabolism research and reviews, 28, 225-231.
Bazghandi, S. A.,Arzanlou, M.,Peeridogaheh, H.,Vaez, H.,Sahebkar, A. , & Khademi, F. (2021). Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur Journal of Microbiology, 14(8).
Elahi, G.,Goli, H. R.,Shafiei, M.,Nikbin, V. S. , & Gholami, M. (2024). Antimicrobial resistance, virulence gene profiling, and genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates in Mazandaran, Iran. BMC microbiology, 24(1), 546.
Everett, M. J. , & Davies, D. T. (2021). Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discovery Today, 26(9), 2108-2123.
Gilardi, G. L. (2020). Identification of Pseudomonas and related bacteria. In Glucose nonfermenting gram-negative bacteria in clinical microbiology (pp. 15-44). CRC press.
Hussein, I. M. S. (2021). Determination of the minimum inhibitor concentration of Syzygium aromaticum extract on the growth of Pseudomonas aeruginosa isolated from burn infection. Tikrit Journal of Pure Science, 26(3), 7-11.
Ikken, Y.,Charof, R.,Elouennass, M. , & Sekhsokh, Y. (2021). The novel biphasic medium for transport, culture and conservation at an ambient temperature of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. World Journal of Microbiology and Biotechnology, 37(11), 187.
Jawad, L. , & Rasheed, H. (2022). Isolation and Purification of anticancer protein Exotxin A from Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1), 48-56.
Kamal, M. A.,Aldin, C. I. , & Husein, A. S. (2018). Prevalence study of Pseudomonas aeruginosa in Teaching Tikrit Hospital from different sources. Tikrit Journal of Pure Science, 20(4), 55-59.
Karim, S. A. A.,Zwain, L. A. , & Mahmoud, E. A. (2023). Effect of pigments of Pseudomonas aeruginosa on adhering and cytotoxicity of A549 cell line. Journal of Applied and Natural Science, 15(3), 954.
Liao, C.,Huang, X.,Wang, Q.,Yao, D. , & Lu, W. (2022). Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Frontiers in cellular and infection microbiology, 12, 926758.
MacFaddin, J. (2000). Biochemical tests for identification of medical bacteria, williams and wilkins. Philadelphia, PA, 113(7).
McDermott, K.,Fang, M.,Boulton, A. J.,Selvin, E. , & Hicks, C. W. (2023). Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes care, 46(1), 209-221.
Morgan, R. N.,Saleh, S. E.,Farrag, H. A. , & Aboshanab, K. M. (2023). New insights on Pseudomonas aeruginosa exotoxin A-based immunotoxins in targeted cancer therapeutic delivery. Therapeutic delivery, 14(1), 31-60.
Morin, C. D.,Déziel, E.,Gauthier, J.,Levesque, R. C. , & Lau, G. W. (2021). An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence, 12(1), 1469-1507.
Qadir, A. N.,Mahmoud, B. M.,Mahwi, T. O.,Al-Attar, D. M. R. A. , & Mahmood, S. O. (2020). Prevalence of microorganisms and antibiotic sensitivity among patients with diabetic foot ulcer in Sulaimani City, Iraq. Hospital Practices and Research, 5(2), 56-63.
Rezazadeh, M.,Hajian, F.,Radmanesh, E.,Maghsoudi, F.,Hazbenejad, A. , & Mobarak, S. (2023). Investigation of the most common bacterial strains in diabetic foot ulcer patients. Avicenna Journal of Clinical Microbiology and Infection, 10(2), 70-74.
Schmidt, B. M.,Huang, Y.,Banerjee, M.,Hayek, S. S. , & Pop-Busui, R. (2024). Residential address amplifies Health disparities and risk of infection in individuals with Diabetic Foot Ulcers. Diabetes care, 47(3), 508-515.
Sivanmaliappan, T. S. , & Sevanan, M. (2011). Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. International journal of microbiology, 2011(1), 605195.
Srivastava, P. , & Sivashanmugam, K. (2021). Efficacy of sub-MIC level of meropenem and ciprofloxacin against extensive drug-resistant (XDR) Pseudomonas aeruginosa isolates of diabetic foot ulcer patients. Infection, Genetics and Evolution, 92, 104824.
Tuttolomondo, A.,Maida, C. , & Pinto, A. (2015). Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World journal of orthopedics, 6(1), 62.
Wang, X.,Gao, K.,Pan, B.,Wang, B.,Song, Y. , & Guo, W. (2025). The virulence trait and genotype distribution amongst the Pseudomonas aeruginosa clinical strains. BMC microbiology, 25(1), 82.
Wolska, K. , & Szweda, P. (2009). Genetic features of clinical Pseudomonas aeruginosa strains. Polish journal of Microbiology, 58, 255-260.
Wood, S. J.,Goldufsky, J. W.,Seu, M. Y.,Dorafshar, A. H. , & Shafikhani, S. H. (2023). Pseudomonas aeruginosa cytotoxins: mechanisms of cytotoxicity and impact on inflammatory responses. Cells, 12(1), 195.
Yousefi-Avarvand, A.,Khashei, R.,Ebrahim-Saraie, H. S.,Emami, A.,Zomorodian, K. , & Motamedifar, M. (2015). The frequency of exotoxin A and exoenzymes S and U genes among clinical isolates of Pseudomonas aeruginosa in Shiraz, Iran. International journal of molecular and cellular medicine, 4(3), 167.
Section
Research Articles

How to Cite

Molecular detection of toxA and lasB virulence genes of Pseudomonas aeruginosa strains isolated from Diabetic Foot Ulcers in Erbil, Iraq. (2025). Journal of Applied and Natural Science, 17(3), 1386-1392. https://doi.org/10.31018/jans.v17i3.6767