Traditional therapeutic practices of antidiabetic herbs in certain districts of Assam and their validation based on the Glycemic index (GI) evaluation of commonly used herbs
Article Main
Abstract
Traditional medicinal plants have been widely used for managing diabetes, especially in rural and indigenous communities. However, scientific validation of these practices remains limited. This study aims to document the ethnobotanical knowledge of plant-based approaches to diabetes management and to assess the Glycemic index (GI) of the most commonly used herbs to validate their potential efficacy. A structured survey was conducted across several districts to collect data on the traditional use of medicinal herbs for diabetes management. The most frequently reported plant species were chosen for further analysis. Their glycemic index was determined in a murine in vivo model to assess their impact on blood glucose levels. The survey revealed a strong reliance on plant-based remedies for diabetes management. Several plant species demonstrated significant potential to regulate glucose levels, as indicated by their glycemic index values, including Dioscorea villosa, Setaria italica, Tinospora cordifolia, Neolamarckia cadamba, Alternanthera sessilis, and Moringa oleifera. The findings suggest a scientific basis for the continued use of these herbs in traditional medicine. This study reinforces the importance of traditional knowledge in diabetes management and highlights the need for further pharmacological validation of these plant species. The results provide a foundation for developing plant-based interventions as complementary therapeutic options for diabetes care.
Article Details
Article Details
Diabetes management, Ethnobotany, Glycemic index, Indigenous knowledge, Medicinal plants, Plant-based therapy, Traditional medicine
Aijaz, M., Keserwani, N., Yusuf, M., Ansari, N. H., Ushal, R. & Kalia, P. (2022). Chemical, biological, and pharmacological prospects of caffeic acid. Biointerface Res Appl Chem, 13, 324. https://doi.org/10.33263/BRIAC134.324
Al Mazraani, R. A. A. D., Malys, N. & Maliene, V. (2025). Itaconate and its derivatives as anti-pathogenic agents. RSC Advances, 15(6), 4408-4420. https://doi.o rg/10.1039/D4RA08298B
Alakolanga, A. G. A. W., Kumar, N. S., Jayasinghe, L. & Fujimoto, Y. (2015). Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science and Technology, 52(12), 8383– 8388. https://doi.org/10.1007/s13197-015-1937-6
Al-Lahham, S. H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. J. & Venema, K. (2010). Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochimica et biophysica acta, 1801(11), 1175–1183. https://doi.org/10.1016/j.bbalip.2010.07.007
Ameena, M., Arumugham, M., Ramalingam, K. & Shanmugam, R. (2024). Biomedical applications of lauric acid: a narrative review. Cureus, 16(6), e62770. https://doi.org/10.7759/cureus.62770
Anandakumar, P., Kamaraj, S. & Vanitha, M. K. (2021). D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), e13566. https://doi.org/10.1111/jfbc.13566
Arif, T. (2015). Salicylic acid as a peeling agent: a comprehensive review. Clinical, Cosmetic and Investigational Dermatology, 8, 455–461. https://doi.org/10.2147/CCID.S84765
Arslan, M. E. (2021). Anticarcinogenic properties of malic acid on glioblastoma cell line through necrotic cell death mechanism. MANAS Journal of Engineering, 9(1), 22-29. https://doi.org/10.51354/mjen.848282
Ashwal, E. & Hod, M. (2015). Gestational diabetes mellitus: Where are we now?. Clinicachimica acta, 451, 14-20. https://doi.org/10.1016/j.cca.2015.01.021
Ayswarya, S., Radhakrishnan, M., Manigundan, K., Gopikrishnan, V. & Soytong, K. (2022). Antioxidant activity of 2, 4-di-tert-butylphenol isolated from plant growth promoting endophytic Streptomyces KCA-1.
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C. & Bouyahya, A. (2022). Health benefits and pharmacological properties of stigmasterol. Antioxidants (Basel, Switzerland), 11(10), 1912. https://doi.org/10.3390/anti ox11101912
Balaji, R., Duraisamy, R. & Kumar, M. P. (2019). Complications of diabetes mellitus: Areview. Drug Invention Today, 12(1).
Bankir, L., Bardoux, P. & Ahloulay, M. (2001). Vasopressin and diabetesmellitus. Nephron, 87(1), 8-18. https://doi.org/10.1159/000045879
Benali, T., Bakrim, S., Ghchime, R., Benkhaira, N., El Omari, N., Balahbib, A., Taha, D., Zengin, G., Hasan, M. M., Bibi, S. & Bouyahya, A. (2024). Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnology & Genetic Engineering Reviews, 40(4), 3408–3437. https://doi.org/10.1080/02648725.2022.2122303
Bernstein, E. F., Lee, J., Brown, D. B., Yu, R. & Van Scott, E. (2001). Glycolic acid treatment increases type I collagen mRNA and hyaluronic acid content of human skin. Dermatologic surgery : 27(5), 429–433. https://doi.org/10.1046/j.1524- 4725.2001.00234.x
Bhat, M., Zinjarde, S. S., Bhargava, S. Y., Kumar, A. R. & Joshi, B. N. (2011). AntidiabeticIndian plants: a good source of potent amylase inhibitors. Evidence-based Complementary and Alternative Medicine, 2011(1), 810207.https://doi.org/10.1093/ecam/nen040
Bochkov, D. V., Sysolyatin, S. V., Kalashnikov, A. I. & Surmacheva, I. A. (2012). Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. Journal of Chemical Biology, 5(1), 5–17. https://doi.org/10.1007/s12154-011-0064-8
Bonanome, A. & Grundy, S. M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. The New England Journal of Medicine, 318(19), 1244–1248. https://doi.org/10.1056/NEJM198 805123181905
Bouckaert, J. P. & de Duve, C. (1947). The action of insulin. Physiological Reviews, 27(1), 39-71. https://doi.org/10.1152/physrev.1947.27.1.39
Bunka, F., Pavlínek, V., Hrabě, J., Rop, O., Janiš, R. & Krejčí, J. (2007). Effect of 1- monoglycerides on viscoelastic properties of processed cheese. International Journal of Food Properties, 10(4), 819–828. https://doi.org/10.1080/10942910601113756
Cadena-Iñiguez, J., Santiago-Osorio, E., Sánchez-Flores, N., Salazar-Aguilar, S., Soto-Hernández, R. M., Riviello-Flores, M. D. L. L., ... & Aguiñiga-Sánchez, I. (2024). The cancer-protective potential of protocatechuic acid: A narrative review. Molecules, 29(7), 1439. https://doi.org/10.3390/molecules29071439
Carlomagno, G., De Grazia, S., Unfer, V. & Manna, F. (2012). Myo-inositol in a new pharmaceutical form: a step forward to a broader clinical use. Expert Opinion on Drug Delivery, 9(3),267–271. https://doi.org/10.1517/174252 47.2012.662953
Ceylan-Isik, A. F., Fliethman, R. M., Wold, L. E. & Ren, J. (2008).Herbal and traditionalchinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Current Diabetes Reviews, 4(4), 320-328.
Ciarambino, T., Crispino, P., Leto, G., Mastrolorenzo, E., Para, O. & Giordano, M. (2022).Influence of gender in diabetes mellitus and its complication. International Journal of Molecular Sciences, 23(16), 8850. https://doi.org/10.3390/ijms23168850
Cornell, S. (2020). A review of GLP‐1 receptor agonists in type 2 diabetes: a focus on the mechanism of action of once‐weekly agents. Journal of Clinical Pharmacy and Therapeutics, 45,17-27.https://doi.org/10.1111/jcpt.13230
Das, B., Mitra, A. & Hazra, J. (2011). Management of madhumeha (Diabetes mellitus) withcurrent evidence and intervention with ayurvedic rasausadhies. Indian Journal of Traditional Knowledge, 10(4), 624-628.
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., ... &Weiss, R. (2015). Type 2 diabetes mellitus. Nature reviews Disease Primers, 1(1), 1-22. https://doi.org/10.1038/nrdp.2015.19
Di Magno, L., Di Pastena, F., Bordone, R., Coni, S. & Canettieri, G. (2022). The mechanism of action of biguanides: New answers to a complex question. Cancers, 14(13), 3220. https://doi.org/10.3390/cancers14133220
Ding, Y., Fan, B., Zhu, C. & Chen, Z. (2023). Shared and related molecular targets and actions of salicylic acid in plants and humans. Cells, 12(2), 219. https://doi.org/10.3390/cells12020219
Dittrich, M., Jahreis, G., Bothor, K., Drechsel, C., Kiehntopf, M., Blüher, M. & Dawczynski, C. (2015). Benefits of foods supplemented with vegetable oils rich in α-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trail. European Journal of Nutrition, 54(6), 881–893. https://doi.org/10.1007/s00394-014-0764-2
Duez, H., Cariou, B. & Staels, B. (2012). DPP-4 inhibitors in the treatment of type 2diabetes. Biochemical Pharmacology, 83(7),823-832.https://doi.org/10.1016/j.bcp.201 1.11.028
Espíndola, K. M. M., Ferreira, R. G., Narvaez, L. E. M., Silva Rosario, A. C. R., da Silva, A. H. M., Silva, A. G. B., Vieira, A. P. O. & Monteiro, M. C. (2019). Chemical and pharmacological aspects of caffeic acid and Its activity in hepatocarcinoma. Frontiers in Oncology, 9, 541. https://doi.org/10.3389/fonc.2019.00541
Fartasch, M., Teal, J. & Menon, G. K. (1997). Mode of action of glycolic acid on human stratum corneum: ultrastructural and functional evaluation of the epidermal barrier. Archives of Dermatological Research, 289(7), 404–409. https://doi.org/10.1007/s004030050212
Ferrannini, E. & Solini, A. (2012). SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nature Reviews Endocrinology, 8(8), 495-502. https://doi.org/10.1038/nrendo.2011.243
Furman, B. L., Candasamy, M., Bhattamisra, S. K. & Veettil, S. K. (2020). Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. Journal of Ethnopharmacology, 247, 112264. https://doi.org/10.1016/j.jep.2019.112264
Gandhi, G. R., Vasconcelos, A. B. S., Antony, P. J., Montalvão, M. M., de Franca, M. N. F., Hillary, V. E., ... & Liu, D. (2023). Natural sources, biosynthesis, biological functions, and molecular mechanisms of shikimic acid and its derivatives. Asian Pacific Journal of Tropical Biomedicine, 13(4), 139-147. http://dx.doi.org/10.4103/2221-1691.374230
Gao, H. T., Xu, R., Cao, W. X., Zhou, X., Yan, Y. H., Lu, L., Xu, Q. & Shen, Y. (2016). Food emulsifier glycerin monostearate increases internal exposure levels of six priority controlled phthalate esters and exacerbates their male reproductive toxicities in rats. PloS One, 11(8),e0 161253.https://doi.org/10.1371/journal.p one.0161253
Garber, A. J. (2012). Novel GLP-1 receptor agonists for diabetes. Expert Opinion on Investigational Drugs, 21(1), 45-57. https://doi.org/10.1517/13543784.2012.638282
Goswami, M., Jaswal, S., Gupta, G. D. & Verma, S. K. (2023). A comprehensive update on phytochemistry, analytical aspects, medicinal attributes, specifications and stability of stigmasterol. Steroids, 196, 109244. https://doi.org/10.1016/j.steroids.2023.109244
Green, B., Flatt, P. & Bailey, C. (2007). Gliptins: DPP‐4 inhibitors to treat type 2 diabetes. Future Prescriber, 8(3), 6-12. https://doi.org/10.1002/fps.33
Grover, J. K., Yadav, S. & Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology, 81(1), 81-100. https://doi.org/10.1016/S0378-8741(02)00059-4
Gupta, V., Liu, S., Ando, H., Ishii, R., Tateno, S., Kaneko, Y., Yugami, M., Sakamoto, S., Yamaguchi, Y., Nureki, O. & Handa, H. (2013). Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity. Molecular Pharmacology, 84(6), 824–833. https://doi.org/10.1124/mol.113.087940
Hannan, J. M. A., Ali, L., Rokeya, B., Khaleque, J., Akhter, M., Flatt, P. R. & Abdel-Wahab, Y. H. A. (2007). Soluble dietary fibre fraction of Trigonella foenum-graecum
(fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. British Journal of Nutrition, 97(3), 514-521.
https://doi.org/10.1017/S0007114507657869
Harborne, J. B. (1998). Phytochemical methods a guide to modern techniques of plantanalysis. Germany: Springer Netherlands, pp – 302.
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62, 3-16. https://doi.org/10.1007/s00125-018-4711-2
Hauner, H. (2002). The mode of action of thiazolidinediones. Diabetes/metabolism Research and Reviews, 18(S2), S10-S15. https://doi.org/10.1002/dmrr.249
Heena, Kaushal, S., Kaur, V., Panwar, H., Sharma, P. & Jangra, R. (2024). Isolation of quinic acid from dropped Citrus reticulata Blanco fruits: its derivatization, antibacterial potential, docking studies, and ADMET profiling. Frontiers in Chemistry, 12, 1372560. https://doi.org/10.3389/fchem.2024.1372560
Heikkilä, E., Hermant, A., Thevenet, J., Bermont, F., Kulkarni, S. S., Ratajczak, J., Santo- Domingo, J., Dioum, E. H., Canto, C., Barron, D., Wiederkehr, A. & De Marchi, U. (2019). The plant product quinic acid activates Ca2+ -dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells. British Journal of Pharmacology, 176(17), 3250–3263. https://doi.org/10.11 11/bph.14757
Heywood, V. H. (2011). Ethnopharmacology, food production, nutrition and biodiversity conservation: towards a sustainable future for indigenous peoples. Journal of Ethnopharmacology, 137(1), 1-15. https://doi.org/10.1016/j.jep.2011.05.027
Issa, H. M. & Mohammed, D. H. (2025). A critical review on the journey of benzoic acid in the pharmaceutical industry from manufacturing processes through various uses to disposal: An environmental perspective. Environmental Analysis, Health and Toxicology, 40(1), e2025007. https://doi.org/10.5620/eaht.2025007
Jamal, A. (2023). Embracing nature's therapeutic potential: Herbal medicine. International Journal of Multidisciplinary Sciences and Arts, 2(3), 117-126. https://doi.org/10.47709/ijmdsa.vxix.xxxx
Jangaard, N. O., Pereira, J. N. & Pinson, R. (1968). Metabolic effects of the biguanides andpossible mechanism of action. Diabetes, 17(2), 96-104. https://doi.org/10.2337/diab.17.2.96
Jenkins, D. J., Kendall, C. W., Augustin, L. S., Franceschi, S., Hamidi, M., Marchie, A., ... & Axelsen, M. (2002). Glycemic index: overview of implications in health and
disease. The American Journal of Clinical Nutrition, 76(1), 266S-273S.
Joshi, S. R. & Parikh, R. M. (2007). India; the diabetes capital of the world: Now heading towards hypertension. Journal-Association of Physicians of India, 55(Y), 323.
Kajani, S., Laker, R. C., Ratkova, E., Will, S. & Rhodes, C. J. (2024). Hepatic glucagon action: beyond glucose mobilization. Physiological Reviews, 104(3), 1021-1060. https://doi.org/10.1152/physrev.00028.2023
Kannadhasan, R. & Venkataraman, S. (2013). In vitro capacity and in vivo antioxidant potency of sedimental extract of Tinospora cordifolia in streptozotocin induced type 2 diabetes. Avicenna Journal of Phytomedicine, 3(1), 7.
Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J. & Mengistie, E. (2013). Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Journal of Evidence-Based Complementary & Alternative Medicine, 18(1), 67-74. https://doi.org/10.1177/2156587212460241
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., ... & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 1-17. https://doi.org/10.1038/nrdp.2017.16
Kim, K. B., Nam, Y. A., Kim, H. S., Hayes, A. W. & Lee, B. M. (2014). α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food and Chemical Toxicology, 70, 163–178. https://doi.org/10.1016/j.fct.2014.05.009
Kim, S. J. & Won, Y. H. (1998). The effect of glycolic acid on cultured human skin fibroblasts: cell proliferative effect and increased collagen synthesis. The Journal of Dermatology, 25(2), 85–89.
Konishi, T., Satsu, H., Hatsugai, Y., Aizawa, K., Inakuma, T., Nagata, S., Sakuda, S. H., Nagasawa, H. & Shimizu, M. (2004). A bitter melon extract inhibits the P-glycoprotein activity in intestinal Caco-2 cells: monoglyceride as an active compound. BioFactors (Oxford, England), 22(1-4), 71–74. https://doi.org/10.1002/biof.5520220113
Książek E. (2023). Citric Acid: Properties, Microbial production, and applications in industries. Molecules (Basel, Switzerland), 29(1), 22. https://doi.org/10.3390/molecules29010022
Landgraf, R. (2000). Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs
& Aging, 17(5), 411-425. https://doi.org/10.2165/000 02512-200017050-00007
Lebovitz, H. E. & Feinglos, M. N. (1978). Sulfonylurea drugs: mechanism of antidiabetic action and therapeutic usefulness. Diabetes Care, 1(3), 189-198. https://doi.org/10.2337/diacare.1.3.189
Lema-Pérez, L. (2021). Main organs involved in glucose metabolism. Sugar intake-risks and Benefits and the Global Diabetes 2019Epidemic, 1-15.
Levine, R. & Sobel, G. W. (1957). The mechanism of action of the sulfonylureas in diabetes mellitus. Diabetes, 6(3), 263-269. https://doi.org/10.2337/diab.6.3.263
Li, W. L., Zheng, H. C., Bukuru, J. & De Kimpe, N. (2004). Natural medicines used in the traditional chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology, 92(1), 1-21. https://doi.org/10.1016/j.jep.2003.12.031
Lieberman, L. S. (2003). Dietary, evolutionary, and modernizing influences on the prevalence
of type 2 diabetes. Annual Review of Nutrition, 23(1), 345-377.https://doi.org/10.1146/annurev.nutr.23.011 702.073212
Limaki, H. K. (2014). In-vivo and in-vitro study of mechanism of action of 4 hydroxyisoleucine as an amino acid derived from fenugreek seed with anti-diabetic and properties (Doctoral dissertation, London Metropolitan University).
Low Wang, C. C., Hess, C. N., Hiatt, W. R. & Goldfine, A. B. (2016). Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus–mechanisms, management, and clinical considerations. Circulation, 133(24), 2459-2502. https://doi.org/10.1161/CIRCULATIONA HA.116.022194
Lu, J., Cong, T., Wen, X., Li, X., Du, D., He, G. & Jiang, X. (2019). Salicylic acid treats acne vulgaris by suppressing AMPK/SREBP1 pathway in sebocytes. Experimental Dermatology, 28(7), 786–794. https://doi.org/10.1111/exd.13934
Lu, Y., Zhong, Y., Guo, X., Zhang, J., Gao, Y. & Mao, L. (2022). Structural modification of O/W bigels by glycerol monostearate for improved co-delivery of curcumin and epigallocatechin gallate. ACS Food Science & Technology, 2(6), 975-983. https://doi.org/10.1021/acsfo odscitech.2c00044
Makrilakis, K. (2019). The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. International Journal of Environmental Research and Public Health, 16(15), 2720.https://doi.org/10.3390/ijerph16152720
Malaisse, W. J. (2003). Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus. Treatments in Endocrinology, 2(6), 401-414.
https://doi.org/10.2165/00024677-200302060-00004
Malvano, F., Albanese, D., Cinquanta, L., Liparoti, S. & Marra, F. (2024). A comparative study between beeswax and glycerol monostearate for food-grade oleogels. Gels (Basel, Switzerland), 10(4), 214. https://doi.org/10.3390/gels10040214
Masella, R., Santangelo, C., D'Archivio, M., Li Volti, G., Giovannini, C. & Galvano, F. (2012). Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Current Medicinal Chemistry, 19(18), 2901–2917. https://doi.org/10.2174/092986712800672102
Mathieu, C., Gillard, P. & Benhalima, K. (2017). Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nature Reviews Endocrinology, 13(7), 385-399. https://doi.org/10.1038/nrendo.2017.39
Mehnert, H. (2001). Metformin, the rebirth of a biguanide: mechanism of action and place in the prevention and treatment of insulin resistance. Experimental and Clinical
Endocrinology & Diabetes, 109(Suppl 2), S259-S264. https://doi.org/10.1055/s-200118587
Meier, C., Schwartz, A. V., Egger, A. & Lecka-Czernik, B. (2016). Effects of diabetes drugs on the skeleton. Bone, 82, 93-100. https://doi.org/10.1016/j.bone.2015.04.026
Mett, J. & Müller, U. (2021). The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Scientific Reports, 11(1), 6135. https://doi.org/10.1038/s41598-021-85523-9
Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S. & Devasagayam, T. P. A. (2007). Indian herbs
and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163-173. https://doi.org/10.3164/jcbn.40.163
Morigny, P., Houssier, M., Mouisel, E. & Langin, D. (2016). Adipocyte lipolysis and insulin resistance. Biochimie, 125, 259-266. https://doi.org/10.1016/j.biochi.2015.10.024
Mukhtar, Y. M., Adu-Frimpong, M., Xu, X. & Yu, J. (2018). Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Bioscience Reports, 38(6), BSR20181253. https://doi.org/10.1042/BSR201 81253
Nangare, S., Vispute, Y., Tade, R., Dugam, S. & Patil, P. (2021). Pharmaceutical applications of citric acid. Future Journal of Pharmaceutical Sciences, 7(1), 54. https://doi.org/10.1186/s43094-021-00203-9
Norton, L., Shannon, C., Gastaldelli, A. & DeFronzo, R. A. (2022). Insulin: The master regulator of glucose metabolism. Metabolism, 129, 155142. https://doi.org/10.1016/j.metabol.2022.155142
Nyenwe, E. A., Jerkins, T. W., Umpierrez, G. E. & Kitabchi, A. E. (2011). Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism, 60(1), 1-23. https://doi.org/10.1016/j.metabol.2010.09.010
Obidiegwu, J. E., Lyons, J. B. & Chilaka, C. A. (2020). The dioscorea genus (Yam)—An appraisal of nutritional and therapeutic potentials. Foods, 9(9), 1304.
https://doi.org/10.3390/foods9091304
Ortmeyer H. K. (1996). Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. Obesity Research, 4(6), 569–575. https://doi.org/10.1002/j.1550-8528.1996.tb00271.x
Park, E. S., Moon, W. S., Song, M. J., Kim, M. N., Chung, K. H. & Yoon, J. S. (2001). Antimicrobial activity of phenol and benzoic acid derivatives. International Biodeterioration & Biodegradation, 47(4), 209-214. https://doi.org/10.1016/S0964- 8305(01)00058-0
Perdomo, L., Beneit, N., Otero, Y. F., Escribano, Ó., Díaz-Castroverde, S., Gómez-Hernández, A. & Benito, M. (2015). Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovascular Diabetology, 14(1), 75. https://doi.org/10.1186/s12933-015-0237-9
Petersen, M. C. & Shulman, G. I. (2018). Mechanisms of insulin action and insulin resistance. Physiological Reviews. https://doi.org/10.1152/physrev.00063.2017
Prabhakar, P. K. & Doble, M. (2011). Mechanism of action of natural products used in the treatment of diabetes mellitus. Chinese Journal of Integrative Medicine, 17, 563-574.
https://doi.org/10.1007/s11655-011-0810-3
Pressler, M., Devinsky, J., Duster, M., Lee, J. H., Glick, C. S., Wiener, S., ... & Devinsky, O. (2022). Dietary transitions and health outcomes in four populations–Systematic
review. Frontiers in Nutrition, 9, 748305. https://doi.org/10.3389/fnut.2022.748305
Qaid, M. M. & Abdelrahman, M. M. (2016). Role of insulin and other related hormones in energy metabolism—A review. Cogent Food & Agriculture, 2(1), 1267691.
http://dx.doi.org/10.1080/23311932.2016.1267691
Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., ... & Pang,
M. G. (2021). Role of insulin in health and disease: an update. International Journal of Molecular Sciences, 22(12), 6403. https://doi.org/10.3390/ijms22126403
Ramadan, A. M. A. A., Zidan, S. A. H., Shehata, R. M., El-Sheikh, H. H., Ameen, F., Stephenson, S. L. & Al-Bedak, O. A. H. M. (2024). Antioxidant, antibacterial, and molecular docking of methyl ferulate and oleic acid produced by Aspergillus pseudodeflectus AUMC 15761 utilizing wheat bran. Scientific Reports, 14(1), 3183. https://doi.org/10.1038/s41598-024-52045-z
Rashed, K. (2020). Beta-sitosterol medicinal properties: A review article. J. Sci. Innov. Technol., 9, 208-212.
Reginato, M. J. & Lazar, M. A. (1999). Mechanisms by which thiazolidinediones enhance insulin action. Trends in Endocrinology & Metabolism, 10(1), 9-13. https://doi.org/10.1016/S1043-2760(98)00110-6
Rodbard, H. W. & Rodbard, D. (2020). Biosynthetic human insulin and insulin analogs. American Journal of Therapeutics, 27(1), e42-e51. https://doi.org/10.1097/MJT.0000000000001089
Rouvier, F., Abou, L., Wafo, E., Andre, P., Cheyrol, J., Khacef, M. M., Nappez, C., Lepidi, H. & Brunel, J. M. (2024). Identification of 2,4-Di-tert-Butylphenol as an antimicrobial agent against Cutibacterium acnes bacteria from rwandan propolis. Antibiotics (Basel, Switzerland), 13(11), 1080. https://doi.org/10.3390/antibiotics13111080
S Devi N, Bhattacharya B, Sharma A, Singh I, Kumar P, Huanbutta K & Sangnim T. (2025). From citrus to clinic: Limonene’s journey through preclinical research, clinical trials, and formulation innovations. International Journal of Nanomedicine, 20:4433-4460. https://doi.org/10.2147/IJN.S514247
Samarasinghe, S. & Vokes, T. (2006). Diabetes insipidus. Expert Review of Anticancer Therapy, 6(sup1), S63-S74. https://doi.org/10.1586/14737140.6.9s.S63
Santa-María, C., López-Enríquez, S., Montserrat-de la Paz, S., Geniz, I., Reyes-Quiroz, M. E., Moreno, M., Palomares, F., Sobrino, F. & Alba, G. (2023). Update on anti- inflammatory molecular mechanisms induced by oleic acid. Nutrients, 15(1), 224. https://doi.org/10.3390/nu15010224
Sarkar, B. K., Akter, R., Das, J., Das, A., Modak, P., Halder, S., ... & Kundu, S. K. (2019). Diabetes mellitus: A comprehensive review. Journal of Pharmacognosy and
Phytochemistry, 8(6), 2362-2371.
Schneider, C. L., Cowles, R. L., Stuefer-Powell, C. L. & Carr, T. P. (2000). Dietary stearic acid reduces cholesterol absorption and increases endogenous cholesterol excretion in hamsters fed cereal-based diets. The Journal of Nutrition, 130(5), 1232–1238. https://doi.org/10.1093/jn/130.5.1232
Semaming, Y., Pannengpetch, P., Chattipakorn, S. C. & Chattipakorn, N. (2015). Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evidence-Based Complementary and Alternative Medicine (eCAM), 2015, 593902. https://doi.org/10.1155/2015/593902
Sen, S. & Chakraborty, R. (2017). Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. Journal of Traditional and Complementary Medicine, 7(2), 234-244. https://doi.org/10.1016/j.jtcme.201 6.05.006
Shanmugasundaram, E. R. B., Gopinath, K. L., Shanmugasundaram, K. R. & Rajendran, V. M. (1990). Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. Journal of Ethnopharmacology, 30(3),
265-279. https://doi.org/10.1016/0378-8741(90)90106-4
Sofowora, A. (1993). Medicinal plants and traditional medicines in Africa. Chichester John, Willey & Sons New York, 256, pp – 97-145.
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., ... & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
Tahlan, S., Kumar, P. & Narasimhan, B. (2014). Synthesis, antimicrobial evaluation and QSAR studies of stearic acid derivatives. Drug Research, 64(2), 98–103. https://doi.org/10.1055/s-0033-1353173
Tandon, N., Anjana, R. M., Mohan, V., Kaur, T., Afshin, A., Ong, K., ... & Dandona, L. (2018). The increasing burden of diabetes and variations among the states of India: The global burden of disease study 1990–2016. The Lancet Global Health, 6(12), e1352-e1362.http://dx.doi.o rg/10.1016/S2214-109X(18)30387-5
Tiwari, P., Kumar, B., Kaur, M., Kaur, G. & Kaur, H. (2011). Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia, 1(1), 98-106.
Tompkins, C. V., Brandenburg, D., Jones, R. H. & Sönksen, P. H. (1981). Mechanism of action of insulin and insulin analogues: a comparison of the hepatic and peripheral effects on glucose turnover of insulin, proinsulin and three insulin analogues modified at positions
A1 and B29. Diabetologia, 20(2), 94-101. https://doi.org/10.1007/BF00262008
Trease, G. E. & Evans, W. C. (1989). Pharmacognosy. 13th. ELBS/Bailliere Tindall, London, 345-6.
Upadhyay, R. K. (2023). Giloy (Amrita) Tinospora cordifolia: Its phytochemical, therapeutic, and disease prevention potential. International Journal of Green Pharmacy(IJGP), 17(02).
Valle-González, E. R., Jackman, J. A., Yoon, B. K., Mokrzecka, N. & Cho, N. J. (2020). pH- dependent antibacterial activity of glycolic acid: Implications for anti-acne formulations. Scientific Reports, 10(1), 7491. https://doi.org/10.1038/s41598-020-64545-9
Vallon, V. (2015). The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes
mellitus. Annual Review of Medicine, 66(1), 255-270. https://doi.org/10.1146/annurevmed-051013-110046
Vallon, V. (2024). State-of-the-art-review: mechanisms of action of SGLT2 inhibitors and clinical implications. American Journal of Hypertension, 37(11), 841-852. https://doi.org/10.1093/ajh/hpae092
Wang, Z., Zhao, S., Tao, S., Hou, G., Zhao, F., Tan, S. & Meng, Q. (2023). Dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases. Molecules, 28(6), 2878. https://doi.org/10.3390/molecules28062878
Warren, E. C., Dooves, S., Lugarà, E., Damstra-Oddy, J., Schaf, J., Heine, V. M., Walker, M. C. & Williams, R. S. B. (2020). Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23617–23625. https://doi.org/10.1073/pnas.2008980117
Werner, E. F. & Froehlich, R. J. (2016). The potential role for myoinositol in the prevention of gestational diabetes mellitus. American Journal of Perinatology, 33(13), 1236– 1241. https://doi.org/10.1055/s-0036-1584273
White, M. F. (2017). Mechanism of insulin action. Textbook of Diabetes, 114-132. https://doi.org/10.1002/9781118924853.ch8
Wolever, T. M., Jenkins, D. J., Jenkins, A. L.& Josse, R. G. (1991). The glycemic index: methodology and clinical implications. The American Journal of Clinical Nutrition, 54(5), 846-854. https://doi.org/10.1093/ajcn/54.5.846
Wu, Z., Yang, W., Li, M., Li, F., Gong, R. & Wu, Y. (2023). Relationship between dietary decanoic acid and coronary artery disease: a population-based cross-sectional study. Nutrients, 15(20), 4308. https://doi.org/10.3390/nu15204308
Yang, M. H., Lee, M., Deivasigamani, A., Le, D. D., Mohan, C. D., Hui, K. M., Sethi, G. & Ahn, K. S. (2023). Decanoic acid exerts its anti-tumor effects via targeting c-met signaling cascades in hepatocellular carcinoma model. Cancers, 15(19), 4681. https://doi.org/10.3390/cancers15194681
Yang, W., Wang, Y., Tao, K., & Li, R. (2023). Metabolite itaconate in host immunoregulationand defense. Cellular & Molecular Biology Letters, 28(1), 100. https://doi.org/10.1186/s11658-023-00503-3
Yuan, Q., Xie, F., Huang, W., Hu, M., Yan, Q., Chen, Z., Zheng, Y. & Liu, L. (2022). The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytotherapy Research : PTR, 36(1), 164–188. https://doi.org/10.1002/ptr.7295
Zhang, P., Liu, N., Xue, M., Zhang, M., Liu, W., Xu, C., Fan, Y., Meng, Y., Zhang, Q. & Zhou, (2023). Anti-inflammatory and antioxidant properties of β-Sitosterol in copper sulfate-induced inflammation in zebrafish (Danio rerio). Antioxidants (Basel, Switzerland), 12(2), 391. https://doi.org/10.3390/antiox12020391
Zhao, F., Wang, P., Lucardi, R. D., Su, Z. & Li, S. (2020). Natural sources and bioactivities of 2,4-di-tertbutylphenol and its analogs. Toxins, 12(1), 35. https://doi.org/10.3390/toxins12010035
Zhu, X., Guo, Y., Liu, Z., Yang, J., Tang, H. & Wang, Y. (2021). Itaconic acid exerts anti- inflammatory and antibacterial effects via promoting pentose phosphate pathway to produce ROS. Scientific Reports, 11(1), 18173. https://doi.org/10.1038/s41598-021- 97352-x
Zimmerman, B. R. (1997). Sulfonylureas. Endocrinology and metabolism clinics of North America, 26(3), 511-522. https://doi.org/10.1016/S0889-8529(05)70264-4

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



