Antibiofilm activity of honey against growth and biofilm formation ability of Aerococcus viridans
Article Main
Abstract
Honey is a potent antimicrobial agent. This study aimed to focus on the effect of two types of local honey (mountain and garden honey) on bacterial growth and its ability to produce biofilms. Six concentrations from each type of honey (1.56, 3.13, 6.25, 12.50, 25, and 50 % weight/volume w/v) were tested for this study. Using the microtiter plate method, six pathogenic strains, including Pseudomonas stutzeri, Acinetobacter baumanni, Burkholderia cepacia, Klebsiella oxytoca, Aerococcus viridans, and Staphylococcus aureus, were first examined for their ability to form biofilms. The Aerococcus viridans demonstrated the highest ability to form biofilms; therefore, it was chosen for further experiments. To obtain additional information, the isolate was identified using the 16S rRNA sequence, which produced 100% similarity with the 16S ribosomal RNA gene of Aerococcus viridans strain MT502756. The isolate was submitted in National Center for Biotechnology Information NCBI under the accession number PQ416042. The phylogenetic tree analysis of the strain revealed that it was most closely related to the Aerococcus viridans strain Rizhao 5111 (MN240427). The antibiotic susceptibility results, obtained using the disk diffusion method, showed that A. viridans was resistant to tetracycline, gentamicin, erythromycin, chloramphenicol, clindamycin, ceftriaxone, and ceftazidime. Both of honey showed an effect on the growth of A. viridans at concentrations of 12.5, 25, and 50%. Finally, the ability to shape biofilms was prevented at a 50% concentration when treated with mountain honey, while when using garden honey, it had stopped forming a biofilm at the 12.50%, 25%, and 50% concentrations.
Article Details
Article Details
Aerococcus viridans , Biofilm, Microtiter plate method, Natural honey
Albaridi, N. A. (2019). Antibacterial potency of honey. International Journal of Microbiology, 2019. https://doi.org/10.1155/2019/2464507
Anand, S., Deighton, M., Livanos, G., Morrison, P. D., Pang, E. C. & Mantri, N. (2019). Antimicrobial activity of agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys. Frontiers in microbiology, 10, 263. https://doi.org/10.3389/fmicb.2019.00263
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Bapir, R., Ahmed, S. F., Salih, A. M., Kakamad, F. H., Hussein, K. F. H., Salih, K. M. & Salih, R. Q. (2022). Aerococcus viridans pyelonephritis in a young age female patient with type 1 diabetes mellitus: a rare case report. African Journal of Urology, 28(1), 58. https://doi.org/10.2139/ssrn.4131113
Çetin, M., Ocak, S. & Ertunç, D. (2007). An unusual case of urinary tract infection caused by Aerococcus viridans. NKEM Derg, 21(1):65-67.
Chaplin, A. V., Chagina, I. A., Pimenova, A. S., Godus, N. D., Kargaltseva, N. M., Borisova, O. Y. & Kafarskaya, L. I. (2023). Genetic characterization of Aerococcus sp. 1kp-2016 strain isolated from a patient with bloodstream infection. Bulletin of Russian State Medical University, (2), 19-23. https://doi.org/10.24075/brsmu.2023.012
Chiba, A., Seki, M., Suzuki, Y., Kinjo, Y., Mizunoe, Y. & Sugimoto, S. (2022). Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. NPJ Biofilms and Microbiomes, 8(1), 17. https://doi.org/10.1038/s41522-022-00278-z
Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M. & Beachey, E. H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, 22(6), 996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985
Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P. & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322
Cruz-Soto, A. S., Toro-Castillo, V., Munguía-Magdaleno, C. O., Torres-Flores, J. E., Flores-Pantoja, L. E., Loeza-Lara, P. D. & Jiménez-Mejía, R. (2020). Genetic relationships, biofilm formation, motility and virulence of Escherichia coli isolated from bovine mastitis. Revista Mexicana de Ciencias pecuarias, 11(1), 167-182. https://doi.org/10.22319/rmcp.v11i1.4998
Ghellai, L., Hassaine, H., Klouche, N., Khadir, A., Aissaoui, N., Nas, F. & Zingg, W. (2014). Detection of biofilm formation of a collection of fifty strains of Staphylococcus aureus isolated in Algeria at the University Hospital of Tlemcen. Journal of Bacteriology Research, 6(1), 1-6. https://doi.org/10.5897/jbr2013.0122
Guccione, J., Nizza, S., Mallardo, K., Cantiello, A., Fiorito, F., Di Loria, A. & De Martino, L. (2013). Penicillin-resistant Aerococcus viridans bacteremia associated with bovine severe respiratory syndrome. Open Journal of Veterinary Medicine, 3, 131-135. https://doi.org/10.4236/ojvm.201 3.32021
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15(1), 1-23.
Ibraheem M. I. & Faisal, R. M. (2025). Whole genome sequencing of the multidrug-resistant proteus mirabilis MORAY37 Recovered from a urinary tract infection case in Mosul/ Iraq. Rwanda Medical Journal, 82(1), 38-47. https://doi.org/10.4314/rmj.v82i1.5
Ibrahim, M. A. & Faisal, R. M. (2024). Molecular characterization of antibiotic resistance and virulence genes on plasmids of Proteus mirabilis isolated from urine samples of Hospitals in Mosul City, Iraq. Journal of Applied and Natural Science, 16(2), 830-841. https://doi.org/10.31018/jans.v16i2.5526
Khaleel, A. M., Faisal, R. M. & Altaii, H. A. (2023). The efficiency of molecular methods compared to traditional methods in identifying bacteria from blood and cerebrospinal fluid samples. Malaysian Journal of Microbiology, 19(2). https://doi.org/10.21161/mjm.220105
Kot, B., Sytykiewicz, H., Sprawka, I. & Witeska, M. (2020). Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Scientific Reports, 10(1), 13552. https://doi.org/10.1038/s41598-020-70666-y
Kwakman, P. H., de Boer, L., Ruyter-Spira, C. P., Creemers-Molenaar, T., Helsper, J. P. F. G., Vandenbroucke-Grauls, C. M. J. E. & Te Velde, A. A. (2011). Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. European Journal of Clinical Microbiology & Infectious Diseases, 30, 251-257. https://doi.org/10.1007/s10096-010-1077-x
Kwakman, P. H., Van den Akker, J. P., Güçlü, A., Aslami, H., Binnekade, J. M., de Boer, L. & Zaat, S. A. (2008). Medical-grade honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization. Clinical Infectious Diseases, 46(11), 1677-1682. https://doi.org/10.108 6/587892
Lu, J., Cokcetin, N. N., Burke, C. M., Turnbull, L., Liu, M., Carter, D. A. & Harry, E. J. (2019). Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Scientific Reports, 9(1), 18160. https://doi.org/10.1038/s41598-019-54576-2
Mahmoodi-Khaledi, E., Kashef, N., Habibi-Rezaei, M. & Moosavi-Movahedi, A. A. (2015). In vitro characterization of antibacterial potential of Iranian honey samples against wound bacteria. European Food Research and Technology, 241, 329-339. https://doi.org/10.1007/s00217-015-2464-4
Mama, M., Teshome, T. & Detamo, J. (2019). Antibacterial activity of honey against methicillin-resistant staphylococcus aureus: a laboratory-based experimental study. International Journal of Microbiology, 2019. https://doi.org/10.1155/2019/7686130
Mohammad, G. A. R., Al-Ani, A. G. & Al-Taee, S. M. (2024). Assessing the common ancient traditions prescribed by herbalists for otitis media treatment. Malaysian Journal of Microbiology, 20(5). https://doi.org/10.21161/mjm.230187
Mohan, B., Zaman, K., Anand, N. & Taneja, N. (2017). Aerococcus viridans: a rare pathogen causing urinary tract infection. Journal of Clinical and Diagnostic Research: JCDR, 11(1), DR01. https://doi.org/10.7860/jcdr/2017/23997.9229
Nassar, H. M., Li, M. & Gregory, R. L. (2012). Effect of honey on Streptococcus mutans growth and biofilm formation. Applied and Environmental Microbiology, 78(2), 536-540. https://doi.org/10.1128/aem.05538-11
Owayss, A. A., Elbanna, K., Iqbal, J., Abulreesh, H. H., Organji, S. R., Raweh, H. S. & Alqarni, A. S. (2020). In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina‐christi L. and Acacia gerrardii Benth. trees. Food Science & Nutrition, 8(1), 390-401. https://doi.org/10.1002/fsn3.1320
Qu, X. H., Wu, Q. & Chen, G. Q. (2006). In vitro study on hemocompatibility and cytocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Biomaterials Science, Polymer Edition, 17(10), 1107-1121. https://doi.org/10.1163/156856206778530704
Rasmussen, M. (2016). Aerococcus: an increasingly acknowledged human pathogen. Clinical Microbiology and Infection, 22(1), 22-27. https://doi.org/10.1016/j.cmi.2015.09.026
Romário-Silva, D., Alencar, S. M., Bueno-Silva, B., Sardi, J. D. C. O., Franchin, M., Carvalho, R. D. P. D. & Rosalen, P. L. (2022). Antimicrobial activity of honey against oral microorganisms: Current reality, methodological challenges and solutions. Microorganisms, 10(12), 2325. https://doi.org/10.3390/microorganisms10122325
Sahu, K. K., Lal, A., Mishra, A. K. & Abraham, G. M. (2021). Aerococcus-related infections and their significance: a 9-year retrospective study. Journal of Microscopy and Ultrastructure, 9(1), 18-25.
Sahu, K. K., Mishra, A. K. & Lal, A. (2019). Clinical significance of aerococcus-related infections: an emerging threat. Journal of the Pediatric Infectious Diseases Society, 8(6), 578-578. https://doi.org/10.1093/jpids/piz047
Senneby, E. (2018). Aerococcal infections-from bedside to bench and back. PhD thesis, Lund University: Faculty of Medicine.
Shamsi, T. N., Parveen, R. O., Rehsawla, R. I., Afreen, S. U., Azam, M. U., Fatma, T. A. S. & Fatima, S. A. (2016). In-Vitro antioxidant, antibacterial and anti-inflammatory characterization of Indian honey. Int. J. Pharm. Res., 8, 33-38.
Sharma, S., Mohler, J., Mahajan, S. D., Schwartz, S. A., Bruggemann, L. & Aalinkeel, R. (2023). Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms, 11(6), 1614. https://doi.org/10.3390/microorganisms1 1061614
Sobhi, R. M. & Faisal, R. M. (2024). Genetic characterization of a novel biphenyl degradation pathway in Extensimonas perlucida RM1 isolated from agricultural soil in Mosul city. Malaysian Journal of Microbiology, 20. https://doi.org/10.21161/mjm.240033
Tai, D. B. G., Go, J. R., Fida, M. & Saleh, O. A. (2021). Management and treatment of Aerococcus bacteremia and endocarditis. International Journal of Infectious Diseases, 102, 584-589. https://doi.org/10.1016/j.ijid.202 0.10.096
Viana, F. R., do Carmo, L. S. & Bastos, E. M. A. F. (2018). Antibacterial activity of Aroeira honeys produced in Minas-Gerais against bacteria of clinical importance. Acta Scientiarum. Biological Sciences, 40, 1-4. https://doi.org/10.4025/actascibiolsci.v40i1.36766
Wayne, P. A. (2002). National committee for clinical laboratory standards. Performance standards for Antimicrobial disc Susceptibility Testing, 12, 01-53.
Williams, R. E. O., Hirch, A. & Cowan, S. T. (1953). Aerococcus, a new bacterial genus. Microbiology, 8(3), 475-480. https://doi.org/10.1099/00221287-8-3-475.
Yaban, B., Kikhney, J., Musci, M., Petrich, A., Schmidt, J., Hajduczenia, M. & Moter, A. (2020). Aerococcus urinae–A potent biofilm builder in endocarditis. Plos one, 15(4), e0231827. https://doi.org/10.1371/journal.pone.0231827
Younis, R. M. & Faisal, R. M. (2024). Plasposon mutagenesis in Pseudomonas aeruginosa isolates illustrates the role of ABC transporter in intrinsic resistance to antibiotics. Journal of Applied and Natural Science, 16(3), 1256-1264. https://doi.org/10.31018/jans.v16i3.5856
Yu, S., Jiang, B., Jia, C., Wu, H., Shen, J., Hu, X. & Xie, Z. (2020). Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Annals of Clinical Microbiology and Aantimicrobials, 19, 1-9. https://doi.org/10.1186/s12941-020-00352-4
Zainol, M. I., Mohd Yusoff, K. & Mohd Yusof, M. Y. (2013). Antibacterial activity of selected Malaysian honey. BMC Complementary and Alternative Medicine, 13(1), 1-10. https://doi.org/10.1186/1472-6882-13-129

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



