Isolation of cis-2-methylpalmitolein-9 acid from the fungus Trichoderma asperellum Uz-A4 and its Spectroscopic analysis
Article Main
Abstract
Today, the use of natural and non-harmful substances is one of the main and a pressing issue in all industries. In this regard, most researchers are focused on extracting the necessary components from natural sources and raw materials. At the same time, the purpose of the present practical work is based on the extraction of biologically active substances from microbodies (fungi). In this exploratory study, the extraction of secondary metabolites from the strain Trichoderma asperellum Uz-A4 was performed. Fungal biomass was prepared and extracted using alcoholic extraction, and the resulting extract was fractionated by column chromatography using various solvents. In the chloroform: methanol 9:1 system step of the fractionation process, a high content of cis-2-methylpalmitolein-9 acid was formed, along with a number of secondary metabolites. For the first time, this unsaturated fatty acid was isolated from the strain of Trichodema asperellum Uz-A4. When the structure of this substance was isolated as a pure substance and its structure was studied by other spectroscopic assays, it turned out to be cis-2-methylpalmitoleic acid.
Article Details
Article Details
Antifungal, cis-2-methylpalmitolein-9 acid, Extract, Fungus, Metabolism, Spectrospic, Trichoderma asperellum
Azami, H., Watanabe, Y., Kojima, H. et al. (2024). Cytosporones Y and Z, new antifungal polyketides produced by the fungal strain Trichoderma sp. FKI-6626. J Antibiot. 77, 721–726. https://doi.org/10.1038/s41429-024-00765-9.
Davis, E.L. , D.M. Meyers, C.J. Dullum & J.S. Feitelson. (1997). Nematicidal activity of fatty acid esters on soybean cyst and root-knot nematodes. J. Nematol., 29 (4), pp. 677-684. PMID: 19274268; PMCID: PMC2619835.
Ding, L.S., W.B. Guo & X.H. Chen (2019). Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3Appl. Microbiol. Biotechnol., 103 (13), 5367-5377.
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al. (2011). Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol., 9 (10):749–759. doi: 10.1038/nrmicro2637
Gajera H.P., Hirpara D.G., Savaliya D.D. & Golakiya B.A. (2020). Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia solani Kuhn in cotton. Physiol. Mol. Plant Pathol., 112:101547. doi: 10.1016/j.pmpp.2020.101547.
Ghavam, M.; Afzali, A. & Manca, M.L. (2021). Chemotype of Damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci. Rep., 11, 8027. https://doi.org/10.1038/s41598-021-87604-1
Guo, X.W., Kun, L.I., Sun, Y.N., Zhang, L.H., Xi-Xi, H.U., Hong-Gang, et al., 2010. Allelopathic effects and identification of allelochemicals in grape root exudates. Acta Horticulturae Sinica, 37(6), 861-868. https://www.cabdirect.org/cabdirect/abstract/20103220851
Ivan Chóez-Guaranda, Fernando Espinoza-Lozano, Dennys Reyes-Araujo, Christian Romero, Patricia Manzano, Luis Galarza & Daynet Sosa (2023). Chemical Characterization of Trichoderma spp. extracts with antifungal activity against Cocoa pathogens. Molecules: 4;28(7):3208. doi: 10.3390/molecules28073208
Jurakulova N.X., & Kamolov L.S. (2021). Stachybotrys chartarum secondary metabolots of poisonic Microzoquary. International Journal of Pharmaceutical and Bio Medical Science, 1(8), 151–158. https://doi.org/10.47191/ijpbms/v1-i8-05
Kamolov Luqmon, Sevara Tojiyeva, SHuxrat Xasanov, Elyor Berdimurodov & Orif Axmedov. 2021. Stachyibotrus, a toxic microscopic fungus, produces low-molecular-weight metabolites. Plant cell Biotechnology and Molecular Biology, 22 (35-36):50-61. https://ikprress.org/index.php/PCBMB/article/view/6301
Khairillah, Y.N.; Sukarno, N. & Batubara, I. (2021). Trichoderma hamatum derived from coffee plant (Coffea canephora) rhizosphere inhibits Candida albicans growth. Biosaintifika J. Biol. Biol. Educ. 13, 369–378. http://dx.doi.org/10.15294/biosaintifika.v13i3.31132
Liu,S.Y., W.B. Ruan, J. Li, H. Xu, J.G. Wang, Y.B. Gao & J. Wang. (2008). Biological control of phytopathogenic fungi by fatty acids. Mycopathologia, 166 (2),93-102. https://doi.org/10.1007/s11046-008-9124-1
Liu,P., Z.H. Liu, C.B. Wang, F. Guo, M. Wang, Y.F. Zhang, et al. (2012). Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities. Allelopathy J., 29 (1) Lukonge,E., M.T. Labuschagne, A. Hugo. (2007). The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries, J. Sci. Food Agric., 87 (2), 340-347. https://doi.org/10.1002/jsfa.2731
Nitish Rattan Bhardwaj & J. Kumar. (2017). Characterization of volatile secondary metabolites from Trichoderma asperellum. Journal of Applied and Natural Science, 9(2):954-959. DOI:10.31018/jans.v9i2.1303
Pan,K., L.H. Xu, F.Z. Wu, Z. Han, L.R. Chu & C.F. Qiu. (2013). Fungicidal effects of wheat root exudates on Fusarium oxysporum f. sp niveum. Allelopathy Journal, 32 (2), 257-265.
Perez-Vich,B., L. del Moral, L. Velasco, B.S. Bushman, S.J. Knapp, A. Leon, et al. (2016). Molecular basis of the high-palmitic acid trait in sunflower seed oil. Mol. Breed, 36 (4), p. 12. https://doi.org/10.1007/s11032-016-0462-2
Raffaele,S., A. Leger & D. Roby. (2009). Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signaling Behav., 4 (2), 94-99. https://doi.org/10.4161/psb.4.2.7580
Reghmit Abdenaceur., Benzina-tihar Farida. & Sahir-Halouane Fatma. (2024). Volatile organic compounds activities of Trichoderma species isolated from olive grove soil against the wilt pathogen, Verticillium dahlia. European Journal of Plant Pathology, 01 March. Volume 170, pages 789–803. https://doi.org/10.1007/s10658-024-02839-8
Singh, G.; Tiwari, A.; Gupta, A.; Kumar, A.; Hariprasad, P. & Sharma, S. ( 2021 ). Bioformulation Development via Valorizing Silica-Rich Spent Mushroom Substrate with Trichoderma Asperellum for Plant Nutrient and Disease Management. J. Environ. Manag. 297, 113278. https://doi.org/10.1016/j.jenvman.2021.113278
Stracquadanio C., Quiles J.M., Meca G. & Cacciola S.O. (2020). antifungal activity of bioactive metabolites produced by Trichoderma and Trichoderma in liquid medium. J. Fungi.; 6:263. doi: 10.3390/jof6040263.
Van Leeuwen, S.-S., Leeflang, B. R., Gerwig, G.-J., & Kamerling, J.-P. (2008). Development of a 1H-NMR structural-reporter-group-concept for the primary structural characterization of α-d-glucans. Carbohydrate Research, 343(6), 1114-1119. doi: 10.1016/j.carres.2008.01.043.
Zhao, X, H. Chang, L. Feng, Y. Jing, W.L. Teng, L.J. Qiu, et al. (2019). Genome-wide association mapping and candidate gene analysis for saturated fatty acid content in soybean seed. Plant Breeding, 138 (5), pp. 588-598.
Zeiad Moussa, Yasmene F Alanazi, Aiah Mustafa Khateb, Noha M Eldadamony, Marwa M Ismail, WesamEldin I A Saber & Doaa Bahaa Eldin Darwish. 2023. Domiciliation of Trichoderma asperellum suppresses Globiosporangium ultimum and promotes pea growth, ultrastructure, and metabolic features. Microorganisms, 12;11(1),198. doi: 10.3390/microorganisms11010198

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)