Sub-lethal effects of a binary mixture of urea and diammonium phosphate (DAP) on earthworm, Eisenia fetida biomass accumulation and body wall histology
Article Main
Abstract
Chemical fertilizers have increased agricultural yields and fed thousands of people for over 60 years. Synthetic additives (Urea and diammonium phosphate) increase yield but also increase soil contamination, residual chemical bioaccumulation, and impacts on soil fauna. Additionally, earthworms and other soil-dwelling microorganisms are at risk due to the use of chemical fertilizers. Urea and diammonium phosphate are commonly used fertilizers for cash crops (wheat, rice, maize, and soyabean) in managed agro-ecosystems. The present experiment aimed to study the impact of using chemical fertilizers in agricultural practices on soil-inhabiting earthworms, Eisenia fetida and the imposition of significant risks to farmers' friends. The present study was designed to raise earthworms, E. fetida, in laboratory conditions according to OECD guidelines (1984) number 207, using artificial soil treated with a binary combination mixture of urea and DAP (LC10Urea+LC10DAP) for 60 days. Results showed that the presence of chemical fertilizers (LC10Urea+LC10DAP-a binary mixture) in the treatment exerted a sublethal toxicological effect on earthworms' E. fetida capacity for biomass accumulation. On days 15 and 60, histological observation were also noted in the body wall of the earthworm, E. fetida. The number of galandular cells in the epithelial layer increases on day 15 to 60. On day 60 of E. fetida treatment group, a slight rupture in the epithelial layer is observed. The present study demonstrated that the detrimental effects of nitrogenous fertilizers on earthworms can have significant ecological repercussions for the entire terrestrial ecosystem, in addition to harming important soil fauna.
Article Details
Article Details
Binary mixture, Chemical fertilizer, Diammonium phosphate (DAP), Earthworm, Eisenia fetida, Urea
Akat, E. & Arman, S. (2016). Toxic Effect of fenamiphos on the earthworm, Eisenia fetida annelida: Oligochaeta. Hacettepe . Journal of Biology and Chemistry, 44(2), 133-137.
Aouaichia, K., Grara, N., Bazri, K. E., Barbieri, E., Mamine, N., Hemmami, H., ... & Bellucci, S. (2024). Morphophysiological and histopathological effects of ammonium sulfate fertilizer on Aporrectodea trapezoides (Dugès, 1828) earthworm. Life, 14(9), 1209. https://doi.org/10.3390/life14091209
Azizullah, A., Nasir, A., Richter, P., Lebert, M. & Häder, D. P. (2011). Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis. Environmental and Experimental Botany, 74, 140-150.
Barillet, S., Adam-Guillermin, C., Palluel, O., Porcher, J.-M. & Devaux, A. (2010). Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ. Pollut., 159, 495–502.
Bhattacharya, A.& Sahu, S. K. (2015). Toxic effect of superphosphate on soil ecosystem using earthworm Drawida willsi as test specimen. Journal of Biodiversity and Environmental Sciences (JBES)., 2220-6663 (Print) , 2222-3045 (Online), 6 (4), 220-226.
Byambas, P., Hornick, J.L., Marlier, D. & Francis, F. (2019). Vermiculture in animal farming: a review on the biological and nonbiological risks related to earthworms in animal feed. Cogent Environ. Sci., 5(1), 1591328; https:// doi.org/10.1080/23311843.2019.15913-28
Chaudhari, M.S. (2016). Acute toxicity of Diammonium phosphate to earthworm (Eudrilus eugeniae). Journal of Entomology and Zoology Studies, 4(6), 501-503.
Chen, C., Y., Qian, Y., Zhao, X. & , Q. (2015). The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environ. Int., 77, 95–105. https://doi.org/10.1016/j. envint.2015.01.014.
Culling, C. F. A., Allison, R. T. & Barr, W. T. (1985). Haematoxylin and its counter stain. In Cellular Pathology Technique, 4th edn.(Ed. CFA Culling.) pp. 111–152.
Darwin, C. (1892). The formation of vegetable mould through the action of worms: With observations on their habits; Appleton. New York, USA.
Daware, N.A., Potkile, S.N ., Sarak ,S.R.& Deshmukh, K.Y. (2024). Effect of application of nano urea and nano DAP on growth characters of soybean (Glycine max L.). International Journal of Research in Agronomy, 7(11), 330-334.
Dekemati, I., Simon, B., Bogunovic, I., Kisic, I., Kassai, K., Kende, Z. & Birkás, M. (2020). Long term effects of ploughing and conservation tillage methods on earthworm abundance and crumb ratio. Agronomy, 10(10), 1552. https://doi.org/10.3390/agronomy10101552
Dhafar, H. & Mohammed, A. (2024). Effect of urea fertilizer on the vitality of the earthworm Octolasion Cyanieum. NTU Journal of Pure Sciences, Учредители: Northern technical university, 3(2), 9-13. DOI: https://doi.org/10.56286/ntujps.v3i2.
Dulaurent, A. M., Daoulas, G., Faucon, M. P.& Houben, D. (2020). earthworms (Lumbricus terrestris L.) mediate the fertilizing effect of frass. Agronomy, 10(6), 783. https://doi.org/10.3390/agronomy10060783
Esaivani C., Vasanthi K., Chairman K. (2017). Comparative histological studies in the gut of earthworms exposed to chemical fertilizer and organic manure. Indian Journal of Applied Research, 7(2), 641-644.
Gautam, K., Seth, M., Dwivedi, S., Jain, V., Vamadevan, B., Singh, D., ... & Anbumani, S. (2022). Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. Environmental Research, 213, 113689.
Govinda, K., Bhavya, N. & Krishna Murthy, R. (2023). Heavy metal content in chemical fertilizers and its implications on agroecosystems and human health. Recent Advances in Agricultural Sciences and Technology. Dilpreet publication house, Ariana publishers New delhi.
Gowri, S. & Thangaraj, R. (2020). Studies on the toxic effects of agrochemical pesticide (Monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species. International Journal of Environmental Health Research, 30(2), 212-225.
Guo, R., Zhang, X., Tang, Z., Zhang, Y. & Huang, K. (2022). Effects of rice straw combined with inorganic fertilizer on grain filling and yield of common buckwheat. Agronomy, 12(6), 1287. https://doi.org/10.3390/agronomy12061287
Heredia Rivera, B., Rodriguez, M.G., Rodriguez-Heredia, M., Rodriguez-Heredia, B., Barois, I. & Gonzalez Segovia, R. (2020). Characterisation by excitation-emission matrix fluorescence spectroscopy of pigments in mucus secreted of earthworm Eisenia foetida Exposed to Lead. J. Fluoresce, 30(3), 725–733. https://doi.org/ 10.1007/s10895-020-02533-y.
Hobbelen, P.H.F., Koolhaas, J.E. & van Gestel, C.A.M. (2006). Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ. Pollut., 144, 639–646.
Iordrache, M. & Borza, I. (2010). Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant, Soil and Environment, 56(9), 401- 407.
Kılıç, G. A. (2011). Histopathological and biochemical alterations of the earthworm (Lumbricus terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey). Chemosphere, 83, 1175.
Kumar, K. & Dahiya, S. (2024). The comparative impact of chemical fertilizers, nano-urea and nano-DAP on growth and yield of wheat crop. Int. J. Adv. Biochem. Res, 8, 1133-1139.
Kumar, U., Kumar, N. A., Shahid, M., Gupta, V. V., Panneerselvam, P., Mohanty, S. & Kaviraj, M. (2018). Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agric. Ecosyst. Environ, 262, 65–75.
Ladha, J. K., Tirol-Padre, A., Reddy, C. K., Cassman, K. G., Verma, S., Powlson, D. S., ... & Pathak, H. (2016). Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 6(1), 19355.
Lahive, E., Jurkschat, K., Shaw, B. J., Handy, R. D., Spurgeon, D. J. & Svendsen, C. (2014). Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environmental Chemistry, 11(3), 268-278.
Lalthanzara, H. & Ramanujam, S. N. (2010). Effect of fertilizer (NPK) on earthworm population in the agro-forestry system of Mizoram India. Science Vision, 10(4), 159-167.
Long, W., Ansari, A. & Seecharran, D. (2017). The effect of urea on epigeic earthworm species (Eisenia foetida). Cell Biology and Development, 1(2), 46-50.
Lourenço, J.I., Pereira, R.O., Silva, A.C., Morgado, J.M., Carvalho, F.P., Oliveira, J.M., Malta, M.P., Paiva, A.A., Mendo, S.A. & Gonçalves, F.J. (2011). Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J. Hazard. Mater, 186, 788–795.
Matlok, N., Szostek, M., Antos, P.,Gajdek, G..Gorzelany, J.,Bobrecka-Jamro, D.& Balawejder, M. (2020). Effect of foliar and soil fertilization with new products based on calcinated bones on selected physiological parameters of maize plants . Appl. Sci, 10, 2579.
Meharaj, I. & Manivannan, S. (2015). Influence of poultry waste amended with different organic food sources on growth and reproduction performance of indigenous earthworms Lampito mauritii (Kinberg) and Perionyx excavatus (Perrier). Eur. J. Exp. Biol., 5 (6), 1–6.
Miglani, R. & Bisht, S.S. (2019). World of earthworms with pesticides and insecticides. InterdiscipToxicol, 12(2), 71- 82. doi:10.2478/intox-2019-0008
Mohammed, D. H. & Mohammed, A. M. (2023). Effect of the balanced and nano-composite NPK fertilizer on the vitality of the earthworm Octolasion cyanieum and its effect on the histological composition of the middle of the body. Nativa, 11(2), 241-250.
Moore, J. D., Ouimet, R.& Bohlen, P. J. (2013). Effects of liming on survival and reproduction of two potentially invasive earthworm species in a northern forest Podzol. Soil Biology and Biochemistry, 64, 174-180.
Morgan, A.J.; Turner, M.P.; Morgan, J.E. (2002). Morphological plasticity in metal sequestering earthworm chloragocytes: Morphometric electron microscopy provides a biomarker of exposure in field populations. Environ. Toxicol. Chem., 21, 610–618
Morgan, J. E. & Morgan, A. J. (1992). Heavy metal concentrations in the tissues, ingesta and faeces of ecophysiologically different earthworm species. Soil Biology and Biochemistry, 24(12), 1691-1697.
Morgan, J.E. & Morgan, A.J. (1998). The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Environ. Pollut., 99, 167–175
Neuhauser, E.F. & Callahan, C.A. (1990). Growth and reproduction of the Earthworm Eisenia foetida exposed to sublethal concentration of organic chemicals. Soil Biology and Biochemistry, 31,363-366.
Organization for economic cooperation and development OECD (1984). Earthworm Acute toxicity tests: OECD GuidelinesTest. Chem., 1, 1–9.
Paoletti, M. G. & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems & Environment, 74(1-3), 157-165.
Passi, M. & Shukla, V. (2022). Lethal concentration 50 (LC50) of urea Fertilizer and induced morphological changes on Eisenia fetida. Futuristic trends for sustainable ecosystem . First edition, 359-367),CRC press; Taylor and Francis group.
Passi, M. (2023). Comparative study of toxicity induced by chemical and organic fertilizers on earthworm. Doctaral thesis, Maharishi Dayanand University, Zoology Department, Rohtak, Haryana.
Passi, M., Shukla, V. & Deswal, P. (2021). Effect of chemical and bio-fertilizers on the life table attributes of Eisenia fetida. Journal of Applied and Natural Science, 13(4), 1524-1530. https://doi.org/10.31018/jans.v13i4.2973
Poleksic, V., Lenhardt, M., Jaric, I., Djordjevic, D., Gacic, Z., Cvijanovic, G. & Raskovic, B. (2010). Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environ. Toxicol. Chem., 29, 515–521.
Prakash, Om. (2019). Abundant species of earthworm in different regions of India-A review.International Journal of Research in Engineering, Science and Management, (11), 439-445.www.ijresm.com | ISSN (Online): 2581-5792.
Prasetyo, D., Imaria, D., Niswati, A. & Yusnaini, S. (2021). Effect of soil tillage and N fertilization on the population and biomass of earthworm under Zeamays L. J. Trop. Soils, 26(2), 105-113. DOI: 10.5400/jts.2021.v26i2.105.
Prinsloo, M.W., Reinecke, S.A., Przybylowicz, W.J., Mesjasz-Przybylowicz & J., Reinecke, A.J. (1999). Micro-PIXE studies of Cd distribution in the nephridia of the earthworm Eisenia fetida (Oligochaeta). Nucl. Instrum. Meth., B, 158, 317– 322.
Rai, N., Ashiya, P. & Rathore, D. S. (2014). Comparative study on the effect of chemical fertilizers and organic fertilizers on Eisenia foetida. International J. Innov. Res. Sci. Eng. Technol., 3 (5), 12991-12998.
Rashid, A. (2019). Comparative study of effect of chemical fertilizers or organic fertilizer on earthworm Eisenia fetida. Journal of Emerging Technologies and Innovative Research , 6(6), 967-974. www.jetir.org (ISSN-2349-5162) JETIR1908300.
Raza, S.T., Tang, J. L., Ali, Z., Yao, Z., Bah, H., Iqbal, H. & Rn, X. (2021). Ammonia volatilization and greenhouse gases emissions during vermicomposting with animal manures and biochar to rnhance sustainability. Int. J. Environ. Res. Public Health, 18, 178-85.
Samal, S., Mishra, C. S. K. & Sahoo, S. (2019). Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg). Environmental Science and Pollution Research, 26(8), 8039-8049.
Samal, S., Sahoo, S.& Mishra, C. S. K. (2017). Morpho-histological and enzymatic alterations in earthworms Drawida willsi and Lampito mauritii exposed to urea, phosphogypsum and paper mill sludge. Chemistry and Ecology, 33(8), 762-776.
Sangwan, P., Kaushik, C. P. & Garg, V. K. (2010). Vermicomposting of sugar industry waste (press mud) mixed with cow dung employing an epigeic earthworm Eisenia fetida. Waste Management & Research, 28(1), 71-75.
Saqib, A., Manuja, S., Kumar, N., Sharma, R. P., Mujahed, B. A.& Thakur, D. (2025). Effect of nitrogen and phosphorus levels and Nano-DAP application on growth and yield of soybean {Glycine max (L). Merr.}. Himachal Journal of Agricultural Research, 88-93.
Senapati, B.K & Dash, M.C. (1984). Functional role of earthworms in the decomposer subsystem. Tropical Ecology, 25 (2), 54-73.
Shanmugavel, D., Rusyn, I., Solorza-Feria, O. & Kamaraj, S. K. (2023). Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. Science of the Total Environment, 904, 166729. https://doi.org/10.1016/j.scitotenv.2023.166729
Shi, Z.M., Liu, Z.W., Tang, Y.H., Zhao & Wang, C.Y. (2020). Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives. Appl. Soil. Ecol., 147, 103377.
Shruthi, N., Biradar, AP. & Syed, M. (2017). Toxic effect of inorganic fertilizers to earthworms (Eudrilus eugeniae). Journal of Entomology and Zoology Studies, 5(6), 1135- 1137.
Staley, C., Breuillin-Sessoms, F.P., Kaiser, T., Venterea, R. T. & Sadowsky, M. J. (2018). Urea amendment decreases microbial diversity and selects for specific nitrifying strains in eight contrasting agricultural soils. Frontiers in Microbiology, 9, 634. https://doi.org/10.3389/fmicb.2018.00634
Syers, J. K. & Springett, J. A. (1984). Earthworms and soil fertility. Plant and Soil, 76(1), 93-104.
Tang, Y., Garvin, D. F., Kochian, L. V., Sorrells, M. E. & Carver, B. F. (2002). Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Science, 42(5), 1541-1546.
Teh, Z. C., Lestari, D. V., Yulisa, A., Musa, M., Chen, T. W., Darwish, N. M., … & Hadibarata, T. (2022). Tolerance of earthworms in soil contaminated with polycyclic aromatic hydrocarbon. Industrial and Domestic Waste Management, 2(1), 9-16.
Thakur, S. S. & Yadav, S . (2018). Exploration of earthworms of India through online digital library, Earthworms - The ecological engineers of soil, Sajal Ray, IntechOpen, DOI: 10.5772/intechopen. 75666. Available from: https:// www.intechopen.com/books/earthworms-the-ecologicalengineers-of-soil/exploration-of-earthworms-of-indiathrough-online-digital-library(accessed on 9 jan, 2019).
Tiwari, S. C. (1993). Effects of organic manure and NPK fertilization on earthworm activity in an Oxisol. Biology and Fertility of Soils, 16(4), 293-295.
Vijver, M.G., Wolterbeek, H.T., Vink, J.P.M. & van Gestel, C.A.M., (2005). Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci. Total Environ., 340, 271–280.
Vinodhini, R. & Narayanan, M. (2009). Heavy metal induced histopathological alterations in selected organs of the Cyprìnus carpio L. (Common Carp). Int. J. Environ. Res., 3, 95–100.
Whalen, J. K., Parmelee, R. W. & Edwards, C. A. (1998). Population dynamics of earthworm communities in corn agroecosystems receiving organic or inorganic fertilizer amendments. Biology and Fertility of Soils, 27(4), 400-407.
Wu, L., Jiang,Y., Zhao,F., He, X.,Liu, H. & Yu,K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci. Rep., 10, 9568. https://doi.org/10.1038/s41598-020-66648-9
Xing, Y., Luo, J., Zhang, J., Li, B., Gong, X., Liu, Z. & Liu, C. (2017). Effects of single and combined exposures to copper and benzotriazole on Eisenia fetida. Chemosphere,186,108–115. https://doi.org/10.1016/j.chemosphere.2017.07.129.
Yadav, B.Y., Prashant G ., Rahul, G. G. & Samir S. S. (2017). Urea + DAP Briquette increases yield and reduce fertilizer cost of paddy crop. International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, 3 ( 9) , 294-296.
Yadav, R., Kumar, R., Gupta, R. K., Kaur, T., Kour, A., Kaur, S. & Rajput, A. (2023). Heavy metal toxicity in earthworms and its environmental implications: A review. Environmental Advances, 12, 100374.
Yang, G., Chen, C., Yu, Y., Zhao, H., , W., , Y., Cai, L., He, Y.& , X., (2018). Combined effects of four pesticides and heavy metal chromium on the earthworm using avoidance behavior as an endpoint. Ecotoxicol. Environ. Saf. 157, 191–200. https://doi.org/10.1016/j.ecoenv.2 018.03.067
Zhang, S., Ren, S., Pei, L., Sun, Y. & , F. (2022). Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida. Applied Soil Ecology, 176, 104469.
Zhou, S., Duan, C., , X., Michelle, W.H.G., Yu, Z. & Fu, H. (2008). Assessing cypermethrin-contaminated soil with three different earthworm test methods. J. Environ. Sci., 20(11), 1381-1385.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



