Article Main

Anil Bhardwaj Fozia Choudhary Iqra Sayeed Yasmeen Kouser Nazia Kouser Ali Asghar Shah

Abstract

Nematodes are vital bioindicators of soil health, reflecting ecological conditions and anthropogenic disturbances, such as tourism. This study provides the first comprehensive assessment of nematode diversity in the Patnitop forest (Jammu & Kashmir, India), evaluating their community structure and ecological significance. Soil samples were collected from multiple forest sites, with nematodes identified to genus level and classified by trophic groups and colonizer-persister (c-p) classes. Diversity indices (Shannon Index, Species Evenness, Maturity Index, Plant Parasitic Index) and ecological indices (Enrichment, Structure, Basal) were computed to assess soil food web conditions. Statistical analysis employed the Kruskal-Wallis test. We identified 37 nematode genera, with bacterivores dominating (58.7%), followed by omnivores (20.58%), herbivores (11%), predators (8.9%), and fungivores (2.7%). The c-p classification showed high proportions of opportunistic c-p 1 nematodes (39.0–48.1%) and stable c-p 4 (19.3–27.6%) and c-p 5 (5.8–15.3%) groups. Moderate diversity (Shannon Index: 1.93; Evenness: 0.73) and nutrient-rich conditions (Maturity Index: 2.50; Plant Parasitic Index: 3.20) were observed. High Enrichment (82.59) and Structure (92.48) indices, combined with a low Basal Index (4.17), indicated a stable food web under minimal stress. Trophic group differences were statistically significant (p = 0.00129). The predominance of bacterivores highlights bacterial-mediated decomposition, while nematode metrics demonstrated sensitivity to ecological gradients, underscoring their utility as bioindicators for tourism-linked disturbances. These findings advocate integrating nematode monitoring into forest management frameworks to guide soil conservation in this fragile ecosystem.


 

Article Details

Article Details

Keywords

Colonizer-persister analysis, Ecosystem health, Nematode diversity, Patnitop forest, Soil bio-indicators

References

Ahmad, W. (1996). Plant parasitic nematodes of India. Aligarh. India.
Andrássy, I. (1983). A taxonomic review of the suborder Rhabditina (Nematoda: Secernentia) (p. 241pp).
Asif, M., Jahan, R., & Mahboob, M. (2021). Biological indicative assessment of nematodes in evaluating different terrestrial habitats.
Bakonyi, G., Nagy, P., Kovacs-Lang, E., Kovacs, E., Barabas, S., Répasi, V., & Seres, A. (2007). Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37(1-2), 31-40.
Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6), 224-228.
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
Ding, K., Qiang, Z., Hu, Z., Cheng, S., Sun, R., Fang, H., & Ma, C. (2024). Elevational Gradients of Soil Nematode Communities in Subtropical Forest Ecosystems. Forests, 15(12), 2149.
Dong, K., Moroenyane, I., Tripathi, B., Kerfahi, D., Takahashi, K., Yamamoto, N., & Adams, J. (2017). Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Scientific Reports, 7(1), 3028.
Du Preez, G., Daneel, M., De Goede, R., Du Toit, M. J., Ferris, H., Fourie, H., & Schmidt, J. H. (2022). Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry, 169, 108640.
Ettema, C. H., & Bongers, T. (1993). Characterization of nematode colonization and succession in disturbed soil using the Maturity Index. Biology and Fertility of Soils, 16, 79-85.
Ettema, C. H., & Bongers, T. (1993). Characterization of nematode colonization and succession in disturbed soil using the Maturity Index. Biology and Fertility of Soils, 16, 79-85.
Ferris, H., Bongers, T., & de Goede, R. G. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied soil ecology, 18(1), 13-29.
Ferris, H. (2010). Contribution of nematodes to the structure and function of the soil food web. Journal of nematology, 42(1), 63.
Ferris, H. (2010). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46(2), 97-104.
Ferris, H., & Benavides, I. V. (2024). Opinions and Suggestions on Nematode Faunal Analysis. Journal of nematology, 56(1).
Förster, A., Hohberg, K., Rasche, F., & Emmerling, C. (2024). Nematode community structure suggests perennial grain cropping cultivation as a nature‐based solution for resilient agriculture. Journal of Sustainable Agriculture and Environment, 3(3), e12112.
Freckman, D. W. (1988). Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems & Environment, 24(1-3), 195-217.
Hugot, J. P., Baujard, P., & Morand, S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology, 3(3), 199-208.
Hodda, M. (2022). Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa, 5114(1), 1-289.
Jairajpuri, M. S., & Ahmad, W. (1992). Dorylaimida: free-living, predaceous and plant-parasitic nematodes. Brill.
JW, K., NK, K., GK, M., BM, R., & PM, W. (2009). Nematode community structure as influenced by land use and intensity of cultivation.
Kashyap, P., Afzal, S., Rizvi, A. N., Ahmad, W., Uniyal, V. P., & Banerjee, D. (2022). Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India. Scientific reports, 12(1), 1428.
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., & Rasmann, S. (2016). The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution, 4, 84.
Kimenju, J. W., Karanja, N. K., Mutua, G. K., Rimberia, B. M., & Wachira, P. M. (2009). Nematode community structure as influenced by land use and intensity of cultivation. Tropical and subtropical agroecosystems, 11(2), 353-360.
Kitagami, Y., & Matsuda, Y. (2023). Distribution and characterization of nematodes in above-ground microhabitats in a natural pristine cedar forest in Yakushima Island, Japan. Canadian Journal of Zoology, 102(3), 264-271.
Kouser, Y., Shah, A. A., & Rasmann, S. (2021). The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and evolution, 11(20), 13793-13804.
Li, Q., Dai, M., & Luo, F. (2022). Influence of tourism disturbance on soil microbial community structure in Dawei Mountain national forest park. Sustainability, 14(3), 1162.
Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of nematology, 33(4), 161.
Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., ... & Shah, A. A. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi journal of biological sciences, 28(5), 3049-3059.
Porazinska, D. L., De Mesquita, C. P. B., Farrer, E. C., Spasojevic, M. J., Suding, K. N., & Schmidt, S. K. (2021). Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils. Soil Biology and Biochemistry, 161, 108380.
Pająk, M., Błońska, E., Frąc, M., & Oszust, K. (2016). Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water, Air, & Soil Pollution, 227, 1-14.
Pang, S., Hua, B., Yang, W., Zhang, S., Guan, Y., Bai, K.,& Zhang, X. (2024). Soil properties override climatic factors to shape soil nematode diversity in the eastern forest transect of China. Global Ecology and Conservation, 54, e03061.
Ruess, L. (2024). Nematodes and their trophic interactions in the soil microbiome. Understanding and utilizing soil microbiomes for a more sustainable agriculture, 29.
R Development Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Seinhorst, J. W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin.
Shang, Q., Liu, Y., & Li, Q. (2022). Effects of tourism trampling on soil nitrogen mineralization in Quercus variabilis Blume forests varies with altitudes in the climate transition zone. Forests, 13(9), 1467.
Shao, Y., Wang, Z., Liu, T., Kardol, P., Ma, C., Hu, Y., & Fu, S. (2023). Drivers of nematode diversity in forest soils across climatic zones. Proceedings of the Royal Society B, 290(1994), 20230107.
Shaw, E. A., Boot, C. M., Moore, J. C., Wall, D. H., & Baron, J. S. (2019). Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology and Biochemistry, 130, 177-184.
Sieriebriennikov, B., Ferris, H., & de Goede, R. G. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.
Sushchuk, A. A., & Matveeva, E. M. (2021). Soil nematodes of coniferous forests in the Finnish-Russian Friendship Nature Reserve. Nature Conservation Research. Заповеднаянаука, 6(S1), 76-88.
Tomar, V. V. S., & Ahmad, W. (2009). Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia, 46, 183-189.
Tomar, V. V. S., Mohammad Baniyamuddin, M. B., & Wasim Ahmad, W. A. (2006). Community structure of soil inhabiting nematodes in a mango orchard at Aligarh, India.
Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., & Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198.
Vaid, S., Shah, A. A., Ahmad, R., & Hussain, A. (2014). Diversity of soil inhabiting nematodes in Dera Ki Gali forest of Poonch district, Jammu and Kashmir, India. International Journal of Nematology, 24(1), 97-102.
van Bommel, M., Arndt, K., Endress, M. G., Dehghani, F., Wirsching, J., Blagodatskaya, E.,& Ruess, L. (2024). Under the lens: Carbon and energy channels in the soil micro-food web. Soil Biology and Biochemistry, 199, 109575.
Van Eekeren, N., De Boer, H., Hanegraaf, M., Bokhorst, J., Nierop, D., Bloem, J., &Brussaard, L. (2010). Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil biology and biochemistry, 42(9), 1491-1504.
Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., & Liu, M. (2022). Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656.
Yeates, G. W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of soils, 37, 199-210.


Section
Research Articles

How to Cite

Soil nematode communities as indicators of forest ecosystem health: A study in Patnitop region of District Udhampur, UT, J&K, India. (2025). Journal of Applied and Natural Science, 17(3), 1290-1298. https://doi.org/10.31018/jans.v17i3.6732