Article Main

Oqbah Abdul Halim Mutaman Ali A. Kehall Khalid ehussein M. Idris Thaer Abdulqader Salih

Abstract

Heat shock proteins (HSPs), particularly HSP-70, are critical to insect adaptation under extreme environmental stress. This study evaluated HSP-70 gene expression in three insect species-Apis mellifera (honeybee), Camponotus xerxes (ant), and Musca domestica (housefly)-subjected to heat stress (45°C, 50°C, 55°C) and extreme cold (liquid nitrogen, −96°C). Gene expression was measured using RT-PCR, and fold changes were calculated relative to the control groups. In A. mellifera, HSP-70 expression increased from a baseline of 1.54-fold in controls to 3.00-, 3.30-, and 6.09-fold at 45°C, 50°C, and 55°C, respectively; exposure to liquid nitrogen induced a 4.41-fold increase. In C. xerxes, expression rose from 1.03-fold (control) to 3.07-fold, 3.67, and 7.69-fold with increasing temperatures, while nitrogen exposure led to a 5.61-fold rise. M. domestica exhibited the highest expression at 55°C (5.62-fold) and after nitrogen exposure (4.94-fold), compared to 1.01-fold in controls, although expression at 45°C and 50°C was lower (2.04- and 1.91-fold, respectively).The results indicated that all three species upregulate HSP-70 in response to thermal and cold stress, with the greatest expression observed at 55°C and upon exposure to liquid nitrogen. Notably, C. xerxes showed the strongest heat-induced response, while M. domestica exhibited pronounced expression under both heat and cold, suggesting robust thermal adaptation. These findings underscore the species-specific dynamics of HSP-70 regulation and its pivotal role in cellular protection and survival under extreme environmental conditions.


 

Article Details

Article Details

Keywords

Ant, Heat stress, Honeybee, Housefly, HSP70 gene expression, Thermal adaptation

References
Ali, S., Tariq, A., & Rehman, R. (2021). Molecular chaperone responses in insects under thermal stress: A single-species perspective. Archives of Insect Biochemistry and Physiology, 106(1), e21785. https://doi.org/10.1002/arch.21785
Bai, J., Wang, Y. C., Liu, Y. C., Chang, Y. W., Liu, X. N., Gong, W. R., & Du, Y. Z. (2021). Isolation of two new genes encoding heat shock protein 70 in Bemisia tabaci and analysis during thermal stress. International Journal of Biological Macromolecules, 193, 933–940.
https://doi.org/10.1016/j.ijbiomac.2021.10.158
Brunt, V. E., & Minson, C. T. (2021). Heat therapy: Mechanistic underpinnings and applications to cardiovascular health. Journal of Applied Physiology, 130(2), 469–483.
https://doi.org/10.1152/japplphysiol.00724.2020
Cifric, S., Turi, M., Folino, P., Clericuzio, C., Barello, F., Maciel, T., ... & Gulla, A. (2024). DAMPening tumor immune escape: The role of endoplasmic reticulum chaperones in immunogenic chemotherapy. Antioxidants & Redox Signaling.https://doi.org/10.1089/ars.2023.0212
Colinet, H., Chertemps, T., Boulogne, I., & Siaussat, D. (2016). Age-related decline of abiotic stress tolerance in young Drosophila melanogaster adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(12), 1574–1580.https://doi.org/10.1093/gerona/glw080
Gill, L. T., Kennedy, J. R., & Marshall, K. E. (2023). Proteostasis in ice: The role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus. Journal of Comparative Physiology B, 193, 155–169.https://doi.org/10.1007/s00360-023-01478-7
Gu, L. L., Li, M. Z., Wang, G. R., & Liu, X. D. (2019). Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Journal of Thermal Biology, 82, 177–183.https://doi.org/10.1016/j.jtherbio.2019.04.002
Heidari, P., Rezaee, S., Hosseini Pouya, H. S., & Mora-Poblete, F. (2024). Insights into the Heat Shock Protein 70 (Hsp70) Family in Camelina sativa and its roles in response to salt stress. Plants, 13(23), 3410.
https://doi.org/10.3390/plants13233410
Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., ... & Liu, Q. (2022). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm, 3(3), e161.https://doi.org/10.1002/mco2.161
Jin, J., Li, Y., Zhou, Z., Zhang, H., Guo, J., & Wan, F. (2020). Heat shock factor is involved in regulating the transcriptional expression of two potential Hsps (AhHsp70 and AhsHsp21) and its role in heat shock response of Agasicles hygrophila. Frontiers in Physiology, 11, 562204.
https://doi.org/10.3389/fphys.2020.562204
Jurcau, M. C., Jurcau, A., Cristian, A., Hogea, V. O., Diaconu, R. G., & Nunkoo, V. S. (2024). Inflammaging and brain aging. International Journal of Molecular Sciences, 25, 10535.https://doi.org/10.3390/ijms251710535
King, A. M., MacRae, T. H. (2015). Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 60, 59–75. https://doi.org/10.1146/annurev-ento-010814-020822
Meng, J. Y., Yang, C. L., Wang, H. C., Cao, Y., & Zhang, C. Y. (2022). Molecular characterization of six heat shock protein 70 genes from Arma chinensis and their expression patterns in response to temperature stress. Cell Stress and Chaperones, 27(6), 659–671.
https://doi.org/10.1007/s12192-022-01256-5
Nguyen, A. D., Pham, H. T., & Lee, W. (2021). Heat-induced HSP expression and thermotolerance in desert ants. Frontiers in Physiology, 12, 668830. https://doi.org/10.3389/fphys.2021.668830
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative Cₜ method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Singh, M. K., Shin, Y., Ju, S., Han, S., Choe, W., Yoon, K. S., ... & Kang, I. (2024). Heat shock response and heat shock proteins: Current understanding and future opportunities in human diseases. International Journal of Molecular Sciences, 25(8), 4209.https://doi.org/10.3390/ijms25084209
Tan, A. (2023). Understanding roles for PARP1 in skeletal muscle (Doctoral dissertation, Nottingham Trent University).
Tang, T., Wu, C., Li, J., Ren, G., Huang, D., & Liu, F. (2012). Stress-induced HSP70 from Musca domestica plays a functionally significant role in the immune system. Journal of Insect Physiology, 58(9), 1226–1234. https://doi.org/10.1016/j.jinsphys.2012.06.002
Tian, L., Wang, X., Wang, X., Lei, C., & Zhu, F. (2018). Starvation-, thermal- and heavy metal-associated expression of four small heat shock protein genes in Musca domestica. Gene, 642, 268–276.
https://doi.org/10.1016/j.gene.2017.11.059
Wang, J., Que, S. Q., Liu, X., Jin, M., Xin, T. R., Zou, Z. W., & Xia, B. (2021). Characteristic and expression of Hsp70 and Hsp90 genes from Tyrophagus putrescentiae and their response to thermal stress. Scientific Reports, 11, 11672.https://doi.org/10.1038/s41598-021-91165-6
Xu, Q., Schett, G., Li, C., Hu, Y., & Wick, G. (2000). Mechanical stress–induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases. Circulation Research, 86(11), 1122–1128.
https://doi.org/10.1161/01.RES.86.11.1122
Zhang, Y., Liu, Y., Zhang, J., Guo, Y., & Ma, E. (2015). Molecular cloning and mRNA expression of heat shock protein genes and their response to cadmium stress in the grasshopper Oxya chinensis. PLOS ONE, 10(7), e0131244.https://doi.org/10.1371/journal.pone.0131244
Zhao, Y., Chen, Y., Wang, K., et al. (2022). Heat shock proteins and thermotolerance in honeybee species under climate stress. Journal of Insect Physiology, 138, 104371. https://doi.org/10.1016/j.jinsphys.2022.104371
Zhou, C., Yang, X. B., Yang, H., Long, G. Y., Wang, Z., & Jin, D. C. (2020). Effects of abiotic stress on the expression of Hsp70 genes in Sogatella furcifera (Horváth). Cell Stress and Chaperones, 25(1), 119–131.
https://doi.org/10.1007/s12192-019-01070-3
Zhu, Q., Liu, Y., & Tang, R. (2023). Molecular responses of Musca domestica to urban heat and pesticide exposure. Environmental Entomology, 52(1), 91–99. https://doi.org/10.1093/ee/nvac106
Section
Research Articles

How to Cite

Study of gene expression of Heat shock proteins HSP-70 and some physiological and immunological aspects of three types of heat-tolerant and non-tolerant insects. (2025). Journal of Applied and Natural Science, 17(3), 1092-1099. https://doi.org/10.31018/jans.v17i3.6721