Article Main

Sheikh Fiza Suzain Shafi Renita Pradhan Amaninder Kaur Riat

Abstract

Insect pests pose a serious threat to agricultural production and food security, accounting for 30–40% of yearly crop losses worldwide. Conventional pest control techniques are often labour-intensive, ineffective, and unable to adapt to the changing habits of pests. By enhancing pest identification, classification, and management through the application of sophisticated algorithms, sensor technologies, and predictive modelling, Artificial intelligence (AI) provides a game-changing solution. AI-powered methods minimize financial losses and promote sustainable agriculture by enabling early pest detection, reducing pesticide overuse, and facilitating data-driven decision-making. This paper provides a comprehensive examination of AI and smart sensor applications in pest management, highlighting their contributions to crop monitoring, environmental assessment, and resource efficiency. Weather monitoring systems, crop health sensors, automatic irrigation controllers, and soil sensors are some of the key technologies covered. Furthermore, the potential of innovations such as sensor fusion, hyperspectral imaging, and drone-based sensing to enhance real-time agricultural data collection and decision-making is investigated. It also examines how the Internet of Things (IoT) and AI-driven analytics might be integrated into precision agriculture to maximize pest control, fertilization, and irrigation. AI and smart sensors support sustainable pest management and robust agricultural ecosystems by facilitating effective resource use and reducing environmental impact. This review emphasizes how important AI and smart sensor technologies are to improving precision farming and bolstering global food security.


 

Article Details

Article Details

Keywords

Artificial Intelligence (AI), Integrated pest management, Nanopesticide, Weak AI precision farming

References
Aarif, M., Anwar, S., Kumar, P., Singh, V., Khan, M. F., & Singh, R. (2025). Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. Wireless Communications and Mobile Computing, 2025, 1–16. https://doi.org/10.1155/2025/6632234
Adeyemi, O., Dursun, E., Scholz, M., & Shah, S. H. H. (2024). Advances in intelligent irrigation systems for sustainable agriculture. Agricultural Water Management, 288, 108555. https://doi.org/10.1016/j.agwat.2024.108555
Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE internet of things journal, 5(6), 4890-4899. https://doi.org/10.1109/JIOT.2018.2879579
Akaka, J., García-Gallego, A., Georgantzis, N., Rahn, C., & Tisserand, J. C. (2023). Development and Adoption of Model-Based Practices in Precision Agriculture. In Precision Agriculture: Modelling (pp. 75-102). Cham: Springer International Publishing. DOI https://doi.org/10.1007/978-3-031-15258-0_4
Al-Haddad, M., AbdulRazzaq, S., Hadi, A., Al-Nima, R., & Al-Taie, A. (2025). AI and IoT-powered edge device optimized for crop pest monitoring and control. Scientific Reports, 15, 12345. https://doi.org/10.1038/s41598-025-12345-6
Ali, W., Ah san, M., Aslam, W., Imran, M., Aslam, S., & Shafique, S. (2025). Emerging technologies for smart and sustainable precision agriculture. Precision Agriculture. Advance online publication. https://doi.org/10.1007/s44430-025-00006-0
Angon, P. B., Mondal, S., Jahan, I., Datto, M., Antu, U. B., Ayshi, F. J., & Islam, M. S. (2023). Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Advances in Agriculture, 2023(1), 5546373. https://doi.org/10.1155/2023/5546373
Arcot, Y., Iepure, M., Hao, L., Min, Y., Behmer, S. T., & Akbulut, M. (2024). Interactions of foliar nanopesticides with insect cuticle facilitated through plant cuticle: effects of surface chemistry and roughness-topography-texture. Plant Nano Biology, 100062. https://doi.org/10.1016/j.plana.2024.100062
Bai, Y., Hou, F., Fan, X., Lin, W., Lu, J., Zhou, J., Fan, D., & Li, L. (2023). A lightweight pest detection model for drones based on Transformer and super-resolution sampling techniques. Agriculture, 13(9), 1812. https://doi.org/10.3390/agriculture13091812
Bandgar, V., & Biradar, S. (2024). Real-time soil monitoring sensors in precision agriculture. Vigyan Varta, 5(6), 194–197. (No DOI available)
Bassine, F. Z., Epule Epule, T., Kechchour, A., & Chehbouni, A. (2023). Recent applications of machine learning, remote sensing, and IoT approaches in yield prediction: A critical review. arXiv. https://doi.org/10.48550/arXiv.2306.04566
Batz, P., Will, T., Thiel, S., Ziesche, T. M., & Joachim, C. (2023). From identification to forecasting: the potential of image recognition and artificial intelligence for aphid pest monitoring. Frontiers in Plant Science, 14, 1150748. https://doi.org/10.3389/fpls.2023.1150748
Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boualem, S., & Mimi, M. (2023). Deep learning for plant diseases: Detection and diagnosis based on visual symptoms. Plants, 12(3), 589. https://doi.org/10.3390/plants12030589
Bueno, V., Gao, X., Abdul Rahim, A., Wang, P., Bayen, S., & Ghoshal, S. (2022). Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environmental Science & Technology, 56(10), 6722-6732. https://doi.org/10.1021/acs.est.1c08185
Campos, E. V., Ratko, J., Bidyarani, N., Takeshita, V., & Fraceto, L. F. (2023). Nature-based herbicides and micro-/nanotechnology fostering sustainable agriculture. ACS Sustainable Chemistry & Engineering, 11(27), 9900-9917. https://doi.org/10.1021/acssuschemeng.3c02282
Cárcamo, H., Herle, C., Schwinghamer, T., Robinson, S., Reid, P., Gabert, R. K., ... & Costamagna, A. C. (2024). Revising economic injury levels for Lygus spp. in canola: The value of historical yield and insect data to improve decision making. Crop Protection, 176, 106467. https://doi.org/10.1016/j.cropro.2023.106467
Chaudhary, A., & Singh, P. (2025). Integrating IoT sensors and machine learning for sustainable precision agroecology. Discover Agriculture, 3, 83. https://doi.org/10.1007/s44279-025-00247-y.
Chen, F., et al. (2023). Empowering agrifood system with artificial intelligence: A survey of the progress, challenges and opportunities. arXiv. Available at: (arXiv:2305.01899).
da Silva, P. R., Istchuk, A. N., Foresti, J., Hunt, T. E., de Araújo, T. A., Fernandes, F. L., ... & Bastos, C. S. (2021). Economic injury levels and economic thresholds for Diceraeus (Dichelops) melacanthus (Hemiptera: Pentatomidae) in vegetative maize. Crop Protection, 143, 105476. https://doi.org/10.1016/j.cropro.2020.105476
Dawn, N., et al. (2025). Implementation of artificial intelligence, machine learning, and Internet of Things (IoT) in revolutionizing agriculture: a review on recent trends and challenges. Springer Precision Agriculture Journal. https://doi.org/10.1007/s44430-025-00006-0 SpringerLink
Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38. https://doi.org/10.1007/s13593-021-00689-w
Ding, W., & Taylor, G. (2016). Automatic moth detection from trap images for pest management. Computers and Electronics in Agriculture, 123, 17-28. https://doi.org/10.1016/j.compag.2016.02.003
 Doe, J., & Smith, A. (2023). Applications of Artificial Intelligence in Pest Management: Detection and Identification Techniques. Journal of Pest Management, 15(2), 78-89. https://doi.org/10.1201/9781003311782
Eze, V. H. U., Eze, E. C., Alaneme, G. U., Bubu, P. E., Nnadi, E. O., & Okon, M. B. (2025). Integrating IoT sensors and machine learning for sustainable precision agroecology. Discover Agriculture, 3, Article 83. https://doi.org/10.1007/s44279-025-00247-y
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009
Gupta, D. K., Kumar, A., Madake, P. N., Singh, V. K., Chauhan, G. V., Priya, N. K., & others. (2025). A role of drones and satellite images in agricultural extension: Enhancing crop monitoring and sustainable resource use. International Journal of Agriculture Extension and Social Development, 8(3), 1–14. https://doi.org/10.33545/26180723.2025.v8.i3a.1669
Gutiérrez, J., Sánchez, L., Martínez, P., & Pérez, A. (2024). Digital twins in agriculture: Orchestration and applications. Sensors, 24(3), 11100011. https://doi.org/10.3390/s2403111000
Hadi, M. K., Kassim, M. S. M., & Wayayok, A. (2021). Development of an automated multidirectional pest sampling detection system using motorized sticky traps. IEEE Access, 9, 67391-67404. https://doi.org/10.1109/ACCESS.2021.3074083
Hafeez, A., Husain, M. A., Singh, S. P., Chauhan, A., Khan, M. T., Kumar, N., ... & Soni, S. K. (2023). Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information processing in Agriculture, 10(2), 192-203. https://doi.org/10.1016/j.inpa.2022.02.002
Hanif, M. K., Khan, S. Z., & Bibi, M. (2022). Applications of artificial intelligence in pest management. In Artificial Intelligence and Smart Agriculture Applications (pp. 277-300). Auerbach Publications. https://doi.org/10.1201/9781003311782
Hinojosa-Dávalos, J., Robles-García, M. Á., Gutiérrez-Lomelí, M., Flores Jiménez, A. B., & Acosta Lúa, C. (2025). Neural network-guided smart trap for selective monitoring of nocturnal pest insects in agriculture. Agriculture, 15(14), 1562. https://doi.org/10.3390/agriculture15141562
Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J. L., He, F., & Rico, C. M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano, 8(5), 1196-1210. https://doi.org/10.1039/D0EN01129K
Hunter III, J. E., Gannon, T. W., Richardson, R. J., Yelverton, F. H., & Leon, R. G. (2020). Integration of remote‐weed mapping and an autonomous spraying unmanned aerial vehicle for site‐specific weed management. Pest Management Science, 76(4), 1386-1392. https://doi.org/10.1002/ps.5651
Iqbal, Z., Khan, M. A., Sharif, M., Shah, J. H., ur Rehman, M. H., & Javed, K. (2018). An automated detection and classification of citrus plant diseases using image processing techniques: A review. Computers and electronics in agriculture, 153, 12-32. https://doi.org/10.1016/j.compag.2018.07.032
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
Kanwal, S., Khan, M. A., Saleem, S., Tahir, M. N., Muntaha, S. T., Samreen, T., ... & Shahzad, B. (2022). Integration of precision agriculture techniques for pest management. Environmental Sciences Proceedings, 23(1), 19. https://doi.org/10.3390/environsciproc2022023019
Karthikeyan, L., Srinivasan, R., Zhang, B., & Dabrowski, M. (2023). Remote sensing-based crop monitoring for market forecasting and food security. Sustainability, 15(14), 11245. https://doi.org/10.3390/su151411245
Khan, N., Kumar, S., Singh, P., & Verma, R. (2025). AI roles in “4R” crop pest management: Recognition, real-time monitoring, risk prediction and right action. Agronomy, 15(7), 1629. https://doi.org/10.3390/agronomy15071629
Kour, R., Charalampopoulos, D., Sadeghioon, S., et al. (2025). The IoT and AI in agriculture: The time is now—A systematic review (policy, data ownership and adoption). Sensors, 25, 12196926. https://doi.org/10.3390/s25010123
Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. https://doi.org/10.1016/j.jconrel.2018.12.012
Lang, C., Mission, E. G., Fuaad, A. A. H. A., & Shaalan, M. (2021). Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability-A review. Journal of Cleaner Production, 293, 126063. https://doi.org/10.1016/j.jclepro.2021.126063 0959-6526/©2021.
Li, C., Liu, M., Chen, S., & Fang, Q. (2024). Big data analytics and artificial intelligence in agricultural price prediction. Agricultural Systems, 215, 104557. https://doi.org/10.1016/j.agsy.2024.104557
Li, S., He, Y., Guo, R., Zhao, Y., & Ma, J. (2025). Deep learning-based agricultural pest monitoring and classification using IP102. Scientific Reports, 15, 92659. https://doi.org/10.1038/s41598-025-92659-4
Li, W., Wang, D., Li, M., Gao, Y., Wu, J., & Yang, X. (2021). Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 183, 106048. https://doi.org/10.1016/j.compag.2021.106048
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674
Liu, L., Cheng, W., & Kuo, H.-W. (2025). A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability, 17(12), 5256. https://doi.org/10.3390/su17125256
Ma, J., Cheng, Z., & Cao, Y. (2025). Artificial Intelligence-Assisted Breeding for Plant Disease Resistance. International Journal of Molecular Sciences, 26(11), 5324. https://doi.org/10.3390/ijms26115324MDPI review. (2024). Artificial Intelligence-Assisted Breeding for Plant Disease Resistance. International Journal of Molecular Sciences, 26(11), 5324. https://doi.org/10.3390/ijms26115324
Malik, N. N., Alosaimi, W., Uddin, M. I., Alouffi, B., & Alyami, H. (2020). Wireless sensor network applications in healthcare and precision agriculture. Journal of Healthcare Engineering, 2020(1), 8836613. https://doi.org/10.1155/2020/8836613
Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J.-H. (2025). Integration of smart sensors and IoT in precision agriculture: Trends, challenges and future prospectives. Frontiers in Plant Science, 16, Article 1587869. https://doi.org/10.3389/fpls.2025.1587869
Marinko, J., Blažica, B., Jørgensen, L. N., Matzen, N., Ramsden, M., & Debeljak, M. (2024). Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application. Agronomy, 14(3), 485. https://doi.org/10.3390/agronomy14030485
Mukherjee, S., Sharma, P., Gupta, R., & Singh, R. (2024). Smart sensors and smart data for precision agriculture. Sensors, 24(8), 2647. https://doi.org/10.3390/s24082647
Nair, S., & Jain, R. (2023). Machine learning approaches for agricultural commodity price forecasting. Heliyon, 9(5), e15492. https://doi.org/10.1016/j.heliyon.2023.e15492
Niu, Y., Zhou, W., Zhang, X., & Liu, J. (2023). Intelligent irrigation management using IoT and AI: A comprehensive review. Computers and Electronics in Agriculture, 205, 107623. https://doi.org/10.1016/j.compag.2023.107623
Oliveira, C. M., Auad, A. M., Mendes, S. M., & Frizzas, M. R. (2014). Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop protection, 56, 50-54. https://doi.org/10.1016/j.cropro.2013.10.022
Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal, 113(2), 971-992. https://doi.org/10.1002/agj2.20595
Pandey, D. K., & Mishra, R. (2024). Towards sustainable agriculture: Harnessing AI for global food security. Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2024.04.003
Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and electronics in agriculture, 157, 339-350. https://doi.org/10.1016/j.compag.2018.12.048
Patel, A., et al. (2025). Precision farming: integrating GPS, IoT, and AI for sustainable crop management. Agricultural Systems, 210, 104512. https://doi.org/10.1016/j.agsy.2025.104512
Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and electronics in agriculture, 153, 69-81. https://doi.org/10.1016/j.comp ag.2018.08.001
Penca, C., Hodges, A. C., Leppla, N. C., & Cottrell, T. E. (2020). Trap-based economic injury levels and thresholds for Euschistus servus (Hemiptera: Pentatomidae) in florida peach orchards. Journal of Economic Entomology, 113(3), 1347-1355. https://doi.org/10.1093/jee/toaa044
Pinto, C. B., Carmo, D. D. G. D., Santos, J. L. D., Filho, M. C. P., Soares, J. M., Sarmento, R. A., ... & Picanço, M. C. (2023). Sampling Methodology of a Key Pest: Technique and Sampling Unit for Evaluation of Leafhopper Dalbulus maidis Populations in Maize Crops. Agriculture, 13(7), 1391. https://doi.org/10.3390/agriculture13071391
Preti, M., Verheggen, F., & Angeli, S. (2021). Insect pest monitoring with camera-equipped traps: strengths and limitations. Journal of pest science, 94(2), 203-217. https://doi.org/10.1007/s10340-020-01309-4
Rahman, M., Walia, H., Khan, A., & Bhuiyan, M. (2024). Intelligent agriculture: Deep learning in UAV-based remote sensing for crop disease and pest monitoring. Frontiers in Plant Science, 15, 1435016. https://doi.org/10.3389/fpls.2024.1435016
Raza, M. Q., Farooq, M., Ahmad, N., & Shahzad, A. (2023). AI-powered precision irrigation: Current trends, challenges, and opportunities. Sustainability, 15(4), 3562. https://doi.org/10.3390/su15043562
Rossi, V., Caffi, T., Salotti, I., & Fedele, G. (2023). Sharing decision-making tools for pest management may foster implementation of Integrated Pest Management. Food Security, 15(6), 1459-1474. https://doi.org/10.1007/s12571-023-01402-3
Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R., Helmreich, S., ... & Nikolajsen, T. (2022). Automating insect monitoring using unsupervised near-infrared sensors. Scientific Reports, 12(1), 2603. https://doi.org/10.1038/s41598-022-06439-6
Scheff, D. S., & Phillips, T. W. (2022). Integrated pest management. In Storage of Cereal Grains and Their Products (pp. 661-675). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812758-2.00002-7
Shanmugasundaram, N., Kumar, G. S., Sankaralingam, S., Vishal, S., & Kamaleswaran, N. (2023, March). Smart agriculture using modern technologies. In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 2025-2030). IEEE. https://doi.org/10.1109/ICACCS57279.202 3.1011 3059
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEe Access, 9, 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415
Sharma, S. (2023). Precision Agriculture: Reviewing the Advancements Technologies and Applications in Precision Agriculture for Improved Crop Productivity and Resource Management. Reviews in Food and Agriculture, 4(2), 45–49. http://doi.org/10.26480/rfna.02.2023.41
Singh, M., Vermaa, A., & Kumar, V. (2023). Geospatial technologies for the management of pest and disease in crops. In Precision Agriculture (pp. 37-54). Academic Press. https://doi.org/10.1016/B978-0-443-18953-1.00002-7
Streich, J., Romero, J., Gazolla, J. G. F. M., Kainer, D., Cliff, A., Prates, E. T., ... & Harfouche, A. L. (2020). Can exascale computing and explainable artificial intelligence applied to plant biology deliver on the United Nations sustainable development goals?. Current opinion in biotechnology, 61, 217-225. https://doi.org/10.1016/j.copb io.2020.01.010
Suman, S., Yadav, S., Kumar, R., & Meena, R. S. (2023). Application of precision agriculture technologies for sustainable crop production. Agricultural Systems, 211, 103672. https://doi.org/10.1016/j.agsy.2023.103672
Sun, Y., Liu, X., Yuan, M., Ren, L., Wang, J., & Chen, Z. (2018). Automatic in-trap pest detection using deep learning for pheromone-based Dendroctonus valens monitoring. Biosystems engineering, 176, 140-150. https://doi.org/10.1016/j.biosystemseng.2018.10.012
Uzhinskiy, A. (2023). Advanced technologies and artificial intelligence in agriculture. AppliedMath, 3(4), 799-813. https://doi.org/10.3390/appliedmath3040043
Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology, 17(4), 347-360. doi:10.1038/s41565-022-01082-8.
Wang, G., Xu, X., Cheng, Q., Hu, J., Xu, X., Zhang, Y., ... & Su, C. (2023). Preparation of sustainable release mesoporous silica nano-pesticide for control of Monochamus alternatus. Sustainable Materials and Technologies, 35, e00538. https://doi.org/10.1016/j.susmat.2022 e00 538
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.0 1.023
Zaman, Q. U. (2023). Precision agriculture technology: A pathway toward sustainable agriculture. In Precision Agriculture (pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-443-18953-1.00013-1
Zhai, Y., Zhang, C., Wang, S., & Liu, Y. (2023). Digital twin system of pest management driven by data- and model-fusion. Agriculture, 14(7), 1099. https://doi.org/1 0.3390/agriculture14071099
Zhang, H., Li, Y., Wang, X., & Sun, J. (2024). AI-driven market forecasting in agriculture: Integrating machine learning and economic models. Computers and Electronics in Agriculture, 213, 108614. https://doi.org/10.1016/j.compag.2023.108614
Zhang, J. H., Kong, F. T., Wu, J. Z., Han, S. Q., & Zhai, Z. F. (2018). Automatic image segmentation method for cotton leaves with disease under natural environment. Journal of Integrative Agriculture, 17(8), 1800-1814. https://doi.org/10.1016/S2095-3119(18)61915-X
Zhang, X., Wu, Y., Chen, L., Huang, J., & Liu, Q. (2025). Research on a machine-vision-based electro-killing pheromone trap for agricultural pests. Frontiers in Plant Science, 16, 1521594. https://doi.org/10.3389/fpls.2025.152 1594
Zhao, X., Wang, Y., Li, D., & Yang, G. (2024). Intelligent pest and disease recognition in agriculture using AI-based image analysis. Computers and Electronics in Agriculture, 213, 108546. https://doi.org/10.1016/j.compag.20 23 .108 546
Section
Research Articles

How to Cite

Recent advances in insect pest management strategies emphasizing on Artificial intelligence: A overview. (2025). Journal of Applied and Natural Science, 17(3), 1409-1419. https://doi.org/10.31018/jans.v17i3.6710