Biosynthesis of silver nanoparticles using Vitex negundo: Pesticidal efficacy against Spodoptera litura and Helicoverpa armigera with a safety assessment
Article Main
Abstract
Plant-based metallic nanoparticles hold promise for agricultural applications. This study investigated the biosynthesis of silver nanoparticles (AgNPs) using Vitex negundo leaf extract. It assessed their pesticidal properties and safety. AgNPs were synthesized via aqueous extract and characterized by UV–Vis spectroscopy, dynamic light scattering (DLS), Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) Characterization revealed a surface plasmon resonance (SPR) peak at 435 nm, an average particle size of 236.4 nm, and a stable zeta potential. SEM confirmed spherical morphology, XRD indicated a face-centred cubic (fcc) structure, and FTIR confirmed biomolecule-mediated capping and stabilization. Larvicidal bioassays showed that 5 mg/L AgNPs caused 78-89% mortality in Spodoptera litura and 83-100% in Helicoverpa armigera. In both pests, oxidative stress was triggered. Catalase (CAT) activity increased by over 80% in S.litura and moderately in H. armigera. Glutathione-S-transferase (GST) activity declined post-treatment, from 9.4 to 5.0 mM/min/mg protein in H. armigera and from 1.0 to 0.7 mM/min/mg protein in S. litura, indicating impaired detoxification. In Oreochromis urolepis, AgNPs (5, 10, and 25 mg/L) induced oxidative stress without mortality. CAT activity decreased within 24 hours (72.4% at 5 mg/L) and remained suppressed by day 5 (36.7% at 25 mg/L). Superoxide dismutase (SOD) activity increased at 5 mg/L (19.8%) and 25 mg/L (54.8%), while GST initially declined but rebounded at higher concentrations. Reduced glutathione (GSH) levels increased by 24.3% at 25 mg/L, indicating adaptation. This study highlights that V. negundo-derived AgNPs are effective, eco-friendly biopesticides with minimal non-target toxicity.
Article Details
Article Details
Silver nanoparticles, Vitex negundo leaves, Characterization, Larvicidal activity, Safety assessment
Ahuja, S., Ahuja, S., & Ahuja, U. (2015). Nirgundi (Vitex negundo) – Nature’s Gift to Mankind. Asian Agri-History, 19(1), 5–32.
Ahuja, S., & Ahuja, U. (2008). Learning from farmers—Traditional rice production technology. Asian Agri-History, 12(1), 19–41.
Ale, A., Rossi, A. S., Bacchetta, C., Gervasio, S., De La Torre, F. R., & Cazenave, J. (2018). Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecological Indicators, 93, 1190–1198. https://doi.org/10/gt6n6h
Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109–124. https://doi.org/10.1016/j.jrras.2022.06.012
Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M., & Ali, G. S. (2016). Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract—A comprehensive study. Materials Science and Engineering: C, 58, 359–365. https://doi.org/10.1016/j.msec.2015.08.045
Arif, M., Ullah, R., Ahmad, M., Ali, A., Ullah, Z., Ali, M., Al-Joufi, F. A., Zahoor, M., & Sher, H. (2022). Green Synthesis of Silver Nanoparticles Using Euphorbia wallichii Leaf Extract: Its Antibacterial Action against Citrus Canker Causal Agent and Antioxidant Potential. Molecules, 27(11), 3525. https://doi.org/10.3390/molecules27113525
Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K., & Duttaroy, A. (2013). Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLOS One, 8(1), e53186. https://doi.org/10.1371/journal.pone.0053186
Aryan, Ruby, & Mehata, M. S. (2021). Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chemical Physics Letters, 778, 138760. https://doi.org/10.1016/j.cplett.2021.138760
Atli, G., Canli, E. G., Eroglu, A., & Canli, M. (2016). Characterization of antioxidant system parameters in four freshwater fish species. Ecotoxicology and Environmental Safety, 126, 30–37. https://doi.org/10/f799gv
Ávalos, A., Haza, A. I., Drosopoulou, E., Mavragani-Tsipidou, P., & Morales, P. (2015). In vivo genotoxicity assesment of silver nanoparticles of different sizes by the somatic mutation and recombination test (SMART) on drosophila. Food and Chemical Toxicology, 85, 114–119. https://doi.org/10.1016/j.fct.2015.06.024
Barreto, I. C., de Almeida, A. S., & Sena Filho, J. G. (2021). Taxonomic Insights and Its Type Cyclization Correlation of Volatile Sesquiterpenes in Vitex Species and Potential Source Insecticidal Compounds: A Review. Molecules, 26(21), Article 21. https://doi.org/10.3390/molecules26216405
Baskar, K., Muthu, C., & Ignacimuthu, S. (2014). Effect of pectolinaringenin, a flavonoid from Clerodendrum phlomidis, on total protein, glutathione S-transferase and esterase activities of Earias vittella and Helicoverpa armigera. Phytoparasitica, 42(3), 323–331. https://doi.org/10.1007/s12600-013-0363-4
Canli, E. G., & Canli, M. (2020). Effects of aluminum, copper and titanium nanoparticles on the liver antioxidant enzymes of the Nile fish (Oreochromis niloticus). Energy Reports, 6, 62–67. https://doi.org/10/gt6n2h
Chen, L., Meng, X., Gu, J., Fan, W., Abdlli, N., Peprah, F. A., Wang, N., Zhu, F., Lü, P., Ma, S., & Chen, K. (2019). Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. Ecotoxicology and Environmental Safety, 172, 388–395. https://doi.org/10.1016/j.ecoenv.2019.01.055
Clark, N. J., Boyle, D., Eynon, B. P., & Handy, R. D. (2019). Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: Bioaccumulation potential with minimal physiological effects. Environmental Science: Nano, 6(5), 1393–1405. https://doi.org/10/gt6n6j
Demir, Eş., Vales, G., Kaya, B., Creus, A., & Marcos, R. (2011). Genotoxic analysis of silver nanoparticles in drosophila. Nanotoxicology, 5(3), 417–424. https://doi.org/10.3109/17435390.2010.529176
El-Ashmouny, R. S., Rady, M. H., Merdan, B. A., El-Sheikh, T. A. A., Hassan, R. E., & El Gohary, E. G. E. (2022). Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application. Egyptian Journal of Basic and Applied Sciences, 9(1), 239–253. https://doi.org/10.1080/2314808X. 2022.2063012
Farag, M. R., Abo-Al-Ela, H. G., Alagawany, M., Azzam, M. M., El-Saadony, M. T., Rea, S., Di Cerbo, A., & Nouh, D. S. (2023). Effect of Quercetin Nanoparticles on Hepatic and Intestinal Enzymes and Stress-Related Genes in Nile Tilapia Fish Exposed to Silver Nanoparticles. Biomedicines, 11(3), Article 3. https://doi.org/10/gt5fgm
Farkas, J., Christian, P., Gallego-Urrea, J. A., Roos, N., Hassellöv, M., Tollefsen, K. E., & Thomas, K. V. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101(1), 117–125. https://doi.org/10/fd5b3w
Ghosh, D., Saha, S. K., Kaviraj, A., & Saha, S. (2024). Activity pattern of antioxidant enzymes in relation to the time of exposure of hexavalent chromium to nile tilapia oreochromis niloticus. Ecotoxicology. https://doi.org/10.1007/s10646-024-02832-1
Ibrahim, E., Fouad, H., Zhang, M., Zhang, Y., Qiu, W., Yan, C., Li, B., Mo, J., & Chen, J. (2019). Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 9(50), 29293–29299. https://doi.org/10.1039/C9RA04246F
Jiang, Y., & Paari, K. A. (2025). In silico screening of medicinal plant-derived compounds against Spodoptera litura. Journal of Tropical Life Science, 15(1), 209–222. https://doi.org/10.11594/jtls.15.01.20
Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323–1367. https://doi.org/10.1007/s00204-024-03696-4
Kafel, A., Nowak, A., Bembenek, J., SzczygieŁ, J., Nakonieczny, M., & Świergosz-Kowalewska, R. (2012). The localisation of HSP70 and oxidative stress indices in heads of spodoptera exigua larvae in a cadmium-exposed population. Ecotoxicology and Environmental Safety, 78, 22–27. https://doi.org/10.1016/j.ecoenv.2011.10.024
Kamal Kumar, V., Muthukrishnan, S., & Rajalakshmi, R. (2020). Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Current Plant Biology, 23, 100158. https://doi.org/10.1016/j.cpb.2020.100158
Kaur, M., & Jindal, R. (2017). Oxidative Stress Response in Liver, Kidney and Gills of Ctenopharyngodon Idellus (Cuvier & Valenciennes) Exposed To Chlorpyrifos. MOJ Biology and Medicine, 1, 00021. https://doi.org/10.15406/mojbm.2017.01.00021
Khan, A. K., Renouard, S., Drouet, S., Blondeau, J.-P., Anjum, I., Hano, C., Abbasi, B. H., & Anjum, S. (2021). Effect of UV irradiation (A and C) on casuarina equisetifolia-mediated biosynthesis and characterization of antimicrobial and anticancer activity of biocompatible zinc oxide nanoparticles. Pharmaceutics, 13(11), 1977. https://doi.org/10.3390/pharmaceutics13111977
Khatun, M., Khatun, Z., Karim, Md. R., Habib, Md. R., Rahman, Md. H., & Aziz, Md. A. (2023). Green synthesis of silver nanoparticles using extracts of Mikania cordata leaves and evaluation of their antioxidant, antimicrobial and cytotoxic properties. Food Chemistry Advances, 3, 100386. https://doi.org/10/gt6nvg
Kumar, A., Rakshit, R., Bhowmik, A., Mandal, N., Das, A., & Adhikary, S. (2019). Nanoparticle-Induced Changes in Resistance and Resilience of Sensitive Microbial Indicators towards Heat Stress in Soil. Sustainability, 11(3), Article 3. https://doi.org/10.3390/su11030862
Lal, C., & Verma, L. R. (2006). Use of certain bio-products for insect-pest control. Indian Journal of Traditional Knowledge, 5(1), 79–82.
Lanje, A., Sharma, S., & Pode, R. (2010). Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. Journal of Chemical and Pharmaceutical Research, 2, 478–483.
Lee, B., Duong, C. N., Cho, J., Lee, J., Kim, K., Seo, Y., Kim, P., Choi, K., & Yoon, J. (2012). Toxicity of Citrate-Capped Silver Nanoparticles in Common Carp (Cyprinus carpio). Journal of Biomedicine and Biotechnology, 2012(1), 1–14. https://doi.org/10/gcff8h
Mabrouk, M. M., Mansour, A. T., Abdelhamid, A. F., Abualnaja, K. M., Mamoon, A., Gado, W. S., Matter, A. F., & Ayoub, H. F. (2021). Impact of aqueous exposure to silver nanoparticles on growth performance, redox status, non-specific immunity, and histopathological changes of Nile Tilapia, Oreochromis niloticus, challenged with Aeromonas hydrophila. Aquaculture Reports, 21, 100816. https://doi.org/10/gt5fhh
Manimegalai, T., Raguvaran, K., Kalpana, M., Ajarem, A. J. S., Allam, A. A., Khim, J. S., & Maheswaran, R. (2022). Bio efficacy of synthesised silver nanoparticles using dicrocephala integrifolia leaf extract and their insecticidal activity. Materials Letters, 314, 131860. https://doi.org/10.1016/j.matlet.2022.131860
Manimegalai, T., Raguvaran, K., Kalpana, M., & Maheswaran, R. (2021). Facile Synthesis of Silver Nanoparticles Using Vernonia anthelmintica (L.) Willd. And Their Toxicity Against Spodoptera litura (Fab.), Helicoverpa armigera (Hüb.), i Linn. And Culex quinquefasciatus Say. Journal of Cluster Science. https://doi.org/10.1007/s10876-021-02151-z
Mansour, W. A. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068
Martínez-Cisterna, D., Rubilar, O., Tortella, G., Chen, L., Chacón-Fuentes, M., Lizama, M., Parra, P., & Bardehle, L. (2024). Silver nanoparticles as a potent nanopesticide: Toxic effects and action mechanisms on pest insects of agricultural importance—a review. Molecules, 29(23), Article 23. https://doi.org/10.3390/molecules29235520
Mohammed, G. M., & Hawar, S. N. (2022). Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. International Journal of Biomaterials, 2022(1), 1–10. https://doi.org/10/gt6n5f
Nagesh, M. R., Kumar, N., Khan, J. M., Ahmed, M. Z., Kavitha, R., Kim, S.-J., & Vijayakumar, N. (2022). Green synthesis and pharmacological applications of silver nanoparticles using ethanolic extract of Salacia chinensis L. Journal of King Saud University - Science, 34(7), 102284. https://doi.org/10.1016/j.jksus.2022.102284
Nalini, S. (2004). Vishvavallabha (Dear to the World. The science of plant life). Agri-History Bulletin, 5, 134.
Neupane, N. P., Kushwaha, A. K., Karn, A. K., Khalilullah, H., Uzzaman Khan, M. M., Kaushik, A., & Verma, A. (2022). Anti-bacterial efficacy of bio-fabricated silver nanoparticles of aerial part of Moringa oleifera lam: Rapid green synthesis, In-Vitro and In-Silico screening. Biocatalysis and Agricultural Biotechnology, 39, 102229. https://doi.org/10.1016/j.bcab.2021.102229
Nezhadian, T. A., Majidian, P., Gerami, M., & Ramezani, M. (2021). EFFECT OF GREEN SYNTHESIZED SILVER NANOPARTICLES ON CARNOSIC ACID CONTENT AND PHYSIO-BIOCHEMICAL PROPERTIES OF Rosmarinus Officinalis L. Journal of the Chilean Chemical Society, 66(3), 5251–5258. https://doi.org/10.4067/S0717-97072021000305251
Parthiban, E., Ramachandran, M., Jayakumar, M., & Ramanibai, R. (2019). Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN Applied Sciences, 1(10), 1282. https://doi.org/10.1007/s42452-019-1311-9
Pawar, S., & Kamble, V. (2017). Phytochemical screening, elemental and functional group analysis of Vitex negundo L. leaves. International Journal of Pharmacy and Pharmaceutical Sciences, 9(6), 226. https://doi.org/10.22159/ijpps.2017v9i6.18093
Posgai, R., Ahamed, M., Hussain, S. M., Rowe, J. J., & Nielsen, M. G. (2009). Inhalation method for delivery of nanoparticles to the drosophila respiratory system for toxicity testing. Science of the Total Environment, 408(2), 439–443. https://doi.org/10.1016/j.scitotenv.2009.10.008
Qamar, S. U. R., Tanwir, S., Khan, W. A., Altaf, J., & Ahmad, J. N. (2021). Biosynthesis of silver nanoparticles using Ocimum tenuiflorum extract and its efficacy assessment against Helicoverpa armigera. International Journal of Pest Management, 70(3), 375–383. https://doi.org/10.1080/09670874.2021.1980244
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., Tripathy, M., & Paliwal, N. (2019). Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics, 15, 102565. https://doi.org/10.1016/j.rinp.2019.102565
Sabir, S., Arshad, M., Ilyas, N., Naz, F., Amjad, M. S., Malik, N. Z., & Chaudhari, S. K. (2022). Protective role of foliar application of green-synthesized silver nanoparticles against wheat stripe rust disease caused by Puccinia striiformis. Green Processing and Synthesis, 11(1), 29–43. https://doi.org/10.1515/gps-2022-0004
Smitha, S. L., Nissamudeen, K. M., Philip, D., & Gopchandran, K. G. (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(1), 186–190. https://doi.org/10/c6gh22
Soliman, M., Qari, S. H., Abu-Elsaoud, A., El-Esawi, M., Alhaithloul, H., & Elkelish, A. (2020). Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiologiae Plantarum, 42(9), 148. https://doi.org/10.1007/s11738-020-03131-y
Sukweenadhi, J., Setiawan, K. I., Avanti, C., Kartini, K., Rupa, E. J., & Yang, D.-C. (2021). Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering, 38(1), 1–8. https://doi.org/10.1016/j.sajce.2021.06.008
Sundaramari, M., & Ranganathan, T. T. (2003). Indigenous agricultural practices for sustainable farming. Agrobios (India). https://books.google.co.in/books?id=7j2KAAAACAAJ
Sutha, J., Anila, P. A., Umamaheswari, S., Ramesh, M., Narayanasamy, A., Poopal, R.-K., & Ren, Z. (2020). Biochemical responses of a freshwater fish cirrhinus mrigala exposed to tris(2-chloroethyl) phosphate (TCEP). Environmental Science and Pollution Research, 27(27), 34369–34387. https://doi.org/10.1007/s11356-020-09527-0
Tamilarasi, P., & Meena, P. (2020). Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Materials Today: Proceedings, 33, 2209–2216. https://doi.org/10.1016/j.matpr.2020.04.025
Valsalam, S., Agastian, P., Arasu, M. V., Al-Dhabi, N. A., Ghilan, A.-K. M., Kaviyarasu, K., Ravindran, B., Chang, S. W., & Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65–74. https://doi.org/10.1016/j.jphotobiol.2018.12.010
Wang, F., Cui, H., He, F., Liu, Q., Zhu, Q., Wang, W., Liao, H., Yao, D., Cao, W., & Lu, P. (2022). The green manure (astragalus sinicus L.) improved rice yield and quality and changed soil microbial communities of rice in the karst mountains area. Agronomy, 12(8), Article 8. https://doi.org/10.3390/agronomy12081851
Wasilewska, A., Klekotka, U., Zambrzycka, M., Zambrowski, G., Święcicka, I., & Kalska-Szostko, B. (2023). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chemistry, 400, 133960. https://doi.org/10.1016/j.foodchem.2022.133960
Yassin, M. T., Mostafa, A. A.-F., Al-Askar, A. A., & Al-Otibi, F. O. (2022). Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. Crystals, 12(5), Article 5. https://doi.org/10.3390/cryst12050603
Younas, W., Khan, F. U., Zaman, M., Lin, D., Zuberi, A., & Wang, Y. (2022). Toxicity of synthesized silver nanoparticles in a widespread fish: A comparison between green and chemical. Science of The Total Environment,
845, 157366. https://doi.org/10.1016/j.scitotenv.202 2.157366
Zhang, H., Chen, S., Jia, X., Huang, Y., Ji, R., & Zhao, L. (2021). Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of The Total Environment, 752, 142264. https://doi.org/10.1016/j.scitotenv.2020.142264

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)