Article Main

Jincy A. George Febin Antony Upasana Sridharan Paari kuppusamy Alagesan

Abstract

A group of acyclic sesquiterpenoids, that form the Juvenile hormone is crucial in the developmental physiology of insects. Aedes aegypti is crucial in spreading fatal diseases such as dengue, and dengue hemorrhagic fever. The mosquito undergoes several stages of development, from the egg to the adult stage, utilizing its innate immunity system and juvenile hormone proteins. Thus, targeting the juvenile hormone-binding proteins can potentially inhibit the developmental stages of the mosquito. The mosquito juvenile hormone binding protein (mJHBP) of Aedes aegypti was obtained from the RCSB (PDB). The study identified that Talaromyces islandicus and Bacillus velezensis produced secondary metabolites that act as efficient ligand complexes. The secondary metabolites were procured from PubChem and docked to the binding sites of mJHBP. Among the 26 listed ligand compounds, oxalic acid, decyl 3,5-difluorophenyl ester, oxalic acid 3,5-difluorophenyl undecyl ester, and p-octylacetophenone were found to have higher binding affinity, marking their efficiency in inhibiting the protein. Normal mode analysis studies were performed using iMODs to analyze the B-factor, variance, covariance, and Eigenvalues of the docked protein-ligand complexes. The Absorption, Distribution, Metabolism and Excretion (ADME) properties of the efficient ligand molecules were analyzed using the Swiss ADME tool to segregate potential drug candidates. Targeting the mJHBP complex using the microbial metabolite ligand molecules can inhibit the development of the mosquitoes. The work enlightens the futuristic development of potential candidates in the production of insecticides. The literature confirms it is the first of its type to utilize microbial bio compounds as ligands targeting the mJHB protein complex.


 

Article Details

Article Details

Keywords

ADME analysis, Bacillus velezensis, Juvenile hormone binding protein, , microbial metabolites, molecular docking, Talaromyces islandicus

References
Araújo, I. F., Marinho, V. H. d. S., Sena, I. d. S., Curti, J. M., Ramos, R. d. S., Ferreira, R. M. A., . . . Ferreira, I. M (2022). Larvicidal activity against Aedes aegypti and molecular docking studies of compounds extracted from the endophytic fungus Aspergillus sp. isolated from Bertholletia excelsa Humn. & Bonpl. Biotechnol. Lett 44(3), 439-459. https://doi.org/10.1007/s10529-022-03220-7
Da Costa, G. V., Neto, M. F. A., Da Silva, A. K. P., De Sá, E. M. F., Cancela, L. C. F., Vega, J. S., . . . Santos, C. B. R (2022). Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. Int. J. Mol. Sci 23(15). https://doi.org/10.3390/ijms23158218
Devillers, J., Lagneau, C., Lattes, A., Garrigues, J. C., Clémenté, M. M., & Yébakima, A (2014). In silico models for predicting vector control chemicals targeting Aedes aegypti. SAR QSAR Environ. Res 25(10), 805-835. https://doi.org/10.1080/1062936X.2014.958291
Farag, M. R., Alagawany, M., Bilal, R. M., Gewida, A. G. A., Dhama, K., Abdel-Latif, H. M. R., . . . Naiel, M. A. E (2021). An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals 11(7), 1880. https://doi.org/10.3390/ani11071880
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A (2005). Protein Identification and Analysis Tools on the Expasy Server In: John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (pp:571-607). https://doi.org/10.1385/1-59259-890-0:571
Glue, P., & Clement, R. P (1999). Cytochrome P450 Enzymes and Drug Metabolism—Basic Concepts and Methods of Assessment. Cell. Mol. Neurobiol 19(3), 309-323. https://doi.org/10.1023/A:1006993631057
Kamita, S. G., & Hammock, B. D (2010). Juvenile hormone esterase: biochemistry and structure. J. Pestic. Sci. 35(3), 265-274. https://doi.org/10.1584/jpestics.R10-09
Kim, I. H., Pham, V., Jablonka, W., Goodman, W. G., Ribeiro, J. M. C., & Andersen, J. F (2017). A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. J. Biol. Chem 292(37), 15329-15339. https://doi.org/10.1074/jbc.M117.802009
Kim, I. H., Castillo, J. C., Aryan, A., Martin-Martin, I., Nouzova, M., Noriega, F. G., Andersen, J. F (2020). A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development. PLoS Pathog 16(1), e1008288. https://doi.org/10.1371/journal.ppat.1008288
Kirar, M., Singh, H., & Sehrawat, N (2022). Virtual screening and molecular dynamics simulation study of plant protease inhibitors against SARS-CoV-2 envelope protein. Inform Med Unlocked, 30, 100909. https://doi.org/10.1016/j.imu.2022.100909
Lombard, J., & Moreira, D (2010). Origins and Early Evolution of the Mevalonate Pathway of Isoprenoid Biosynthesis in the Three Domains of Life. Molecular Biology and Evolution 28(1), 87-99. https://doi.org/10.1093/molbev/msq177
López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P (2014). iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42, W271-276. https://doi.org/10.1093/nar/gku339
Mehta, A., Bhardwaj, K. K., Shaiza, M., & Gupta, R (2021). Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biol Futur 72(3), 317-323. https://doi.org/10.1007/s42977-021-00080-6
Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B (2011). Effect of Endocrine Disruptor Pesticides: A Review. International Journal of Environmental Research and Public Health 8(6), 2265-2303. https://doi.org/10.3390/ijerph8062265
Natesh, J., Mondal, P., Penta, D., Abdul Salam, A. A., & Meeran, S. M (2021). Culinary spice bioactives as potential therapeutics against SARS-CoV-2: Computational investigation. Comput. Biol. Med 128, 104102. https://doi.org/10.1016/j.compbiomed.2020.104102
Noriega, F. G (2014). Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? Int Sch Res Notices, 967361.  https://doi.org/10.1155/2014/967361
Omkar, & Bhupendra, K. (2016). Chapter 2 - Biocontrol of Insect Pests. Ecofriendly Pest Management for Food Security 25-61. https://doi.org/10.1016/B978-0-12-803265-7.00002-6
Ramos, R. S., Macêdo, W. J. C., Costa, J. S., da Silva, C. H. T. d. P., Rosa, J. M. C., da Cruz, J. N., . . . Santos, C. B. R (2020). Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: study of the binding mode via docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 38(16), 4687-4709. https://doi.org/10.1080/07391102.2019.1688192
Seeliger, D., & de Groot, B. L (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des 24(5), 417-422. https://doi.org/10.1007/s10822-010-9352-6
Singh, H.R., Tiwari, P., Deb, P.K. et al. (2025). Larvicidal activity, molecular docking, and molecular dynamics studies of 7-(trifluoromethyl)indolizine derivatives against Anopheles arabiensis. Mol Divers, 29, 2323–2340 (2025). https://doi.org/10.1007/s11030-024-10994-7
Section
Research Articles

How to Cite

Computational identification of microbial metabolites as potential inhibitors of mosquito juvenile hormone binding protein for vector control. (2025). Journal of Applied and Natural Science, 17(3), 1202-1213. https://doi.org/10.31018/jans.v17i3.6699