Role of Pseudomonas aeruginosa lipopolysaccharide in controlling bacterial biofilm formation
Article Main
Abstract
Biofilm is a virulence factor used by pathogenic bacteria to facilitate their attachment to the host, thereby facilitating infection. Lipopolysaccharide(LPS) is a large amphipathic molecule found in the outer membrane of Gram-negative bacteria, was extracted from Pseudomonas aeruginosa by chloroform-methanol method, lyophilized, and analyzed by gas chromatography-mass spectrometry (GC-MS) and found many chemical compounds like, (11,14-eicosadienoic acid methyl ester, cis-13-Octadecenoic acid, n-Hexadecanoic acid, Octadecanoic acid, and 9,12-octadecadienoyl chloride, (Z, Z), to determine their inhibitory effect at four concentrations (25, 50, 100 and 200 mg/cm3) on biofilm formation in four species of bacteria Agrobacterium tumefaciens, Mesorhizobium cicero, Staphylococcus aureus, and Escherichia coli. It was found that the concentration of 100 mg/cm³ was effective in inhibiting the formation of biofilms in the three pathological species.Nevertheless, it had no inhibitory effect on the formation of biofilms by M.cicero. Some genes encoding proteins specific to the adhesion of bacteria to their host were also identified as part of the biofilm mechanism.The results showed that the studied bacteria retained some of these genes and lost others, as evidenced by the appearance of bundles on the agarose gel or not.In A. tumefaciens, the celA and celR genes were found to encode cellulose fibres that allow it to adhere to its plant host, M. cicero. M. cicero and S.aureus were found to possess both the NodC and eno genes, but they lost the Nod and ebps genes, respectively. Meanwhile, E. coli exhibited a loss of the FimH gene, which is responsible for its association with the pathogenicity.
Article Details
Article Details
Biofilms, Gas chromatography-Mass spectrometry (GC-MS), Lipopolysaccharide (LPS), Pathogenic bacteria, Pseudomonas aeruginosa
Al-Barhawee, N. I. K., & Ahmed, J. M. (2022). Using Sequencing Technique for Diagnostic Different Species of Genus Rhizobium Which Isolated from Legume Plants. Iraqi Journal of Science, 4213-4224. doi:10.24996/ijs.2022.63.10.8
Al-Rubyee SS, Al-Barhawi NI (2022). Antibacterial effect of Bacillus subtilis extract on the growth of pathogenic bacteria and analyzed by GC-MS. J Educ Sci. 31; 31(1): 111- 122.doi:10.33899/edusj.2022.132296.1203.
Bao, L., Zhu, Z., Ismail, A., Zhu, B., Anandan, V., Whiteley, M., & Xu, P. (2024). Experimental evolution of gene essentiality in bacteria. doi:10.1101/2024.07.16.600122.
Barnhart, D. M., Su, S., & Farrand, S. K. (2013). A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens. Journal of Bacteriology, 196(6), 1257-1274. doi:10.1128/jb.01446-13
Berry, K. A., Verhoef, M. T., Leonard, A. C., & Cox, G. (2022). Staphylococcus aureus adhesion to the host. Annals of the New York Academy of Sciences, 1515(1), 75-96.doi:10.1111/nyas.14807.
Chauhan, A., Modgil, M., & Rajam, M. V. (2021). Establishment of Agrobacterium tumefaciens–mediated genetic transformation of apple pathogen Marssonina coronaria using marker genes under the control of CaMV 35S promoter. Microbiological Research, 253, 126878. doi:10.1016/j.micres.2021.126878
Ciofu, O., & Tolker-Nielsen, T. (2019). Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Frontiers in Microbiology, 10, 913. doi:10.3389/fmicb.2019.00913
Dardelle,F. ; Phelip, C. ; Darabi, M. ; Kondakova, T. ; Warnet, X. ; Combret, E. ; Jurnaville, E. ; Novikov, A. ; Kerzerho, J., & Caroff, M.(2024 ) Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification . Int. J. Mol. Sci. 25(7): 3927 doi:10.3390/ijms25073927.
Dzianach, P. A., Dykes, G. A., Strachan, N. J., Forbes, K. J., & Pérez-Reche, F. J. (2019). Challenges of biofilm control and utilization: lessons from mathematical modelling. Journal of the Royal Society Interface, 16(155), 20190042. doi:10.1098/rsif.2019.0042
Foroogh, N., Rezvan, M., Ahmad, K., & Mahmood, S. (2021). Structural and functional characterization of the FimH adhesin of uropathogenic Escherichia coli and its novel applications. Microbial pathogenesis, 161, 105288.doi:10.1016/j.micpath.2021.105288.
Grumov. D. ; Kostarnoy, A. ; Gancheva, P., & Kondrateve, A. (2024) Asimple and Rapid Microscale Method for Isolating Bacterial Lipopolysaccharides. Int. J. Mol. Sci. 25(12): 6345. https://doi.org/10. 3390/ijms25126345 .
Hojati, Z., Molaie, R., & Gholipour, A. (2015). The FimH Gene in Uropathogenic Escherichiacoli Strains Isolated From Patient With Urinary Tract Infection. Jundishapur Journal of Microbiology, 8(2), S1. doi:10.5812/jjm.17520.
Ibrahim, O. A. J.(2016). Detection the ability of Uropathogenic bacteria to produce Biofilm and Evaluation of the Screening methods. University OF THI-QAR JOURNAL SCIENCE. 6(1):1-9. doi:10.32792/utq/utjsci/v6i1.281.
Isokar, S. S., Potdukhe, S. R., Ingle, R. W., & Pudake, S. P. (2024).Characterization of Mesorhizobium ciceri isolates from chickpea root nodules: A biochemical approach. International Journal of Advanced Biochemistry Research , 8(4): 753-759.doi:10.33545/26174693.2024.v8.i4i.1042.
Jailani, A., Ahmed, B., Lee, J. H., & Lee, J. (2022). Inhibition of Agrobacterium tumefaciens growth and biofilm formation by tannic acid. Biomedicines, 10(7), 1619. doi:10.3390/biomedicines10071619.
Johnson J.R.,& A.L. Stell. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. The Journal of Infectious Diseases 181: 261-272. doi:10.1086/315217.
Koetsier, G., & Cantor, E. (2019). A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers. New England Biolabs Inc, 1-8.
Laekas-Hameder, M., & Daigle, F. (2024). Only time will tell: lipopolysaccharide glycoform and biofilm-formation kinetics in Salmonella species and Escherichia coli. Journal of bacteriology, 206(10), e00318-24.
Lucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Avila, J. A., López-Guerrero, J. A., & Aguilar-Quesada, R. (2016). DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking, 14(4), 264-270. doi:10.1089/bio.2015.0064
Martinet, G.M. ; Lohde. M. ; Higazy, D. ; Brandt, C. ; Pletz, W.M. ; Middelboe, M. ; Makarewicz, O., & Ciofu, O. (2024 ) Diversification of Pseudomonas aeruginosa Biofilm Populations Exposures Decreases the Efficacy of the Treatment. J. Microorg. 12(9): 1880. doi:10.3390/microorganisms 12091880.
Martinez-Medina, M. (2021). pathogenic Escherichia coli: infections and therapies. Antibiotics, 10(2), 112. doi:10.3390/antibiotics10020112.
Paço, A., Da-Silva, J. R., Eliziário, F., Brígido, C., Oliveira, S., & Alexandre, A. (2019). traG gene is conserved across Mesorhizobium spp. able to nodulate the same host plant and expressed in response to root exudates. BioMed Research International, 2019(1), 3715271. doi:10.11 55/2019/3715271.
Rahimi S, Bakht M, Farshadzadeh Z. & Nikkhahi F. (2024). A review of colistin- resistant Escherichia coli isolates in the Middle East: mechanisms, epidemiology, and dissemination from different sources in humans, animals, foodand soil. Arch Razi Inst., 79(1): 13–27. doi:10.32592/ARI.2024.79.1.13
Rivas, R., Laranjo, M., Mateos, P. F., Oliveira, S., Martínez‐Molina, E., & Velázquez, E. (2007). Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Letters in applied microbiology, 44(4), 412-418.
doi:10.1111/j.1472-765X.2006.02086.x.
Sali, W. ; Patoli, D.; Barros, P. J., & Gautier, T. ( 2019 ). Polysaccharide Chain Length of Lipopolysaccharide from Salmonella minnesota is a Determinant of Aggregate Stability, Plasma Residence time and Proinflammatory Propensity in vivo. Fron. In Microb. 10(1774):1-16. doi:10.3389/fmicb.2019.01774.
Sambrook, J. (1989). Molecular cloning: A laboratory manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 9. (No Title), 14, 23. doi:10.1002/jobm.3620300824
Scaletti,E. R. ; Pettersson, P. ; Patrik, J.; Maler, L.; Widmalm, G.; Stenmark, P. ;Westergren, G.R., & Daley, O. D. ( 2024). Structural and functional insight into the Pseudomonas aeruginosa glycosyltransferase WaaG and the implications for Lipopolysaccharide biosynthesis . J. biolog. Chem. 299(10) : 1052-1056 . doi:10.1016/j.jbc.20 23.105256
Shareef, A. Y. (1998). The molecular effect of some plant extract on the growth and metabolism of some gram positive and gram negative bacteria Ph. D. Thesis, college Science, Uni. Mousl, Iraq.
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L., & Aalinkeel R. (2023). Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance ,Control Measures, and Innovative Treatment. Microorganisms, 11(6):1614. doi:10.3390/microorganisms11061614.
Shen, Z. (2025). DNA Extraction with Zymo Quick-DNA™ Fungal/Bacterial Miniprep Kit. /doi:10.17504/protocols.io.dm6gpdw98gzp/v1.
de Sousa, T., Hébraud, M., Alves, O., Costa, E., Maltez, L., Pereira, J. E., & Poeta, P. (2023). Study of antimicrobial resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms, 11(5), 1345. doi:10.3390/microorganisms11051345
Touaitia, R., Mairi, A., Ibrahim, N. A., Basher, N. S., Idres, T., & Touati, A. (2025). Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics, 14(5), 470.
Tristan, A., Ying, L., Bes, M., Etienne, J., Vandenesch, F., & Lina, G. (2003). Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. Journal of clinical microbiology, 41(9), 4465-4467.https://doi.org/10.118/jcm.41.9.4465-4467.20 0 3
Tuon, F. F., Suss, P. H., Telles, J. P., Dantas, L. R., Borges, N. H., & Ribeiro, V. S. T. (2023). Antimicrobial treatment of Staphylococcus aureus biofilms. Antibiotics, 12(1), 87. /doi:10.3390/antibiotics12010087.
Xi, Y., Li, Y., Ying, S., Yan, J., & Shi, Z. (2023). Bacterial lipopolysaccharide with different administration routes affects intestinal mucosal morphological, immunological, and microbial barrier functions in goslings.
Poultry Science, 102(5), 102599..doi:10.1016/j.psj.2023.1 02599.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)