Neuroprotective potential of optimized Lactobacillus fermentum extracts against Acetylcholinesterase activity in Zebrafish model and cytotoxicity studies in PC12 cell line
Article Main
Abstract
Alzheimer’s disease is linked with reduced levels of acetylcholine due to elevated acetylcholinesterase (AChE) activity. Antioxidants and natural AChE inhibitors (AChEIs) are becoming more popular due to their potential neuroprotective benefits. The present work aimed to enhance the production of AChE inhibitors by Lactobacillus fermentum using phytogenic substrates and evaluate their neuroprotective effects in a zebrafish model. Media optimization was carried out using response surface methodology (RSM) with Cinnamomum cassia (0.5 mg/mL), Syzygium aromaticum (1 mg/mL), and Phoenix dactylifera seed (1 mg/mL) as substrates. AChE inhibition was predicted using a quadratic model (R2 = 97.61%), and the maximal inhibition of 28.69% closely matched the expected value of 28.56% (Run no 11). The optimized L. fermentum chloroform extract (OLFCE) exhibited a strong antioxidant potential, with 75.09% DPPH scavenging activity. OLFCE exhibited minimal cytotoxicity on H2O2-induced PC12 cell line, maintaining 95–99% cell viability across all tested concentrations. Treatment of zebrafish with 2.5–10 mg/mL OLFCE significantly enhanced antioxidant enzyme activities (superoxide dismutase and catalase) and decreased AChE levels in brain, liver, and plasma. GC-MS analysis of OLFCE revealed high levels of potential AChEIs i.e. 3,4-dimethyl benzaldehyde (66.81%) and phenol, 2,4-bis(1,1-dimethylethyl) (16.84%). This study demonstrates, for the first time, that substrate-optimized L. fermentum can produce potent AChEIs and antioxidant compounds, as validated through in vivo zebrafish assays. The findings suggest that OLFCE has promising Acetylcholinesterase Inhibitor activity, which can be used for the treatment of Alzheimer’s Disease in the future.
Article Details
Article Details
Acetylcholinesterase, Antioxidant, Lactobacillus fermentum, Optimization
A, K., A, S., & None, E. (2015). A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacological Reports : PR, 67(2). https://doi.org/10.1016/j.pharep.2014.09.004
Abd Mutalib, N., Syed Mohamad, S. A., Jusril, N. A., Hasbullah, N. I., Mohd Amin, M. C. I., & Ismail, N. H. (2023). Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals, 16(5), Article 5. https://doi.org/10.3390/ph16050712
Agatonovic-Kustrin, S., Kettle, C., & Morton, D. W. (2018). A molecular approach in drug development for Alzheimer’s disease. Biomedicine & Pharmacotherapy, 106, 553–565. https://doi.org/10.1016/j.biopha.2018.06.147
Alqahtani, S. S., Makeen, H. A., Menachery, S. J., & Moni, S. S. (2020). Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity – Part B. Arabian Journal of Chemistry, 13(10), 7370–7377. https://doi.org/10.1016/j.arabjc.2020.07.023
Ansari, K. A., Vavia, P. R., Trotta, F., & Cavalli, R. (2011). Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech, 12(1), 279–286. https://doi.org/10.1208/s12249-011-9584-3
Api, A. M., Belsito, D., Biserta, S., Botelho, D., Bruze, M., Burton, G. A., Buschmann, J., Cancellieri, M. A., Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Fryer, A. D., Gadhia, S., Jones, L., Joshi, K., Lapczynski, A., Lavelle, M., Liebler, D. C., … Tsang, S. (2020). RIFM fragrance ingredient safety assessment, 4-ethylbenzaldehyde, CAS Registry Number 4748-78-1. Food and Chemical Toxicology, 146, 111700. https://doi.org/10.1016/j.fct.2020.111700
Ashafaq, M., Hussain ,Sohail, Alshahrani ,Saeed, Madkhali ,Osama, Siddiqui ,Rahimullah, Khuwaja, Gulrana, Alam ,M. Intakhab, & and Islam, F. (2022). Role of cinnamon oil against acetaminophen overdose induced neurological aberrations through brain stress and cytokine upregulation in rat brain. Drug and Chemical Toxicology, 45(2), 633–640. https://doi.org/10.1080/0148054 5.2020.1747484
Babaei, F., Ramalingam, R., Tavendale, A., Liang, Y., Yan, L. S. K., Ajuh, P., Cheng, S. H., & Lam, Y. W. (2013). Novel Blood Collection Method Allows Plasma Proteome Analysis from Single Zebrafish. Journal of Proteome Research, 12(4), 1580–1590. https://doi.org/10.1021/pr3009226
Beniaich, G., Zouirech, O., Allali, A., Bouslamti, M., Maliki, I., El Moussaoui, A., Chebaibi, M., Nafidi, H.-A., Bin Jardan, Y. A., Bourhia, M., & Taleb, M. (2023). Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L. Separations, 10(6), Article 6. https://doi.org/10.3390/separations10060348
Bezerra da Silva, C., Pott, A., Elifio-Esposito, S., Dalarmi, L., Fialho do Nascimento, K., Moura Burci, L., de Oliveira, M., de Fátima Gaspari Dias, J., Maria Warumby Zanin, S., Gomes Miguel, O., & Dallarmi Miguel, M. (2016). Effect of Donepezil, Tacrine, Galantamine and Rivastigmine on Acetylcholinesterase Inhibition in Dugesia tigrina. Molecules, 21(1), 53. https://doi.org/10.3390/molecules210 10053
Cheng, Y., Zhang, L., Jiang, D., Wang, M., Du, X., Zong, H., Lu, X., & Zhuge, B. (2025). Fermentation of highly toxic reed hydrolysate using Candida glycerinogenes to produce platform compound glycerol. International Biodeterioration & Biodegradation, 201, 106069. https://doi.org/10.1016/j.ibiod.2025.106069
Choi, J., Yoon, J., & Kim, M. (2022). Optimization of Fermentation Conditions of Artemisia capillaris for Enhanced Acetylcholinesterase and Butyrylcholinesterase. Foods, 11(15), Article 15. https://doi.org/10.3390/foods11152268
Darwesh, O. M., Eweys, A. S., Zhao, Y.-S., & Matter, I. A. (2023). Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresources and Bioprocessing, 10(1), 12. https://doi.org/10.1186/s40643-023-00632-9
Dehghanian, F., Kalantaripour, T. P., Esmaeilpour, K., Elyasi, L., Oloumi, H., Pour, F. M., & Asadi-Shekaari, M. (2017). Date seed extract ameliorates β-amyloid-induced impairments in hippocampus of male rats. Biomedicine & Pharmacotherapy, 89, 221–226. https://doi.org/10.1016/j.biopha.2017.02.037
Devi, V. S. M. and V. N. M. (2023). Molecular Docking Study For Adenosine Monophosphate-Activated Protein Kinase Agonist From Syzygium Cumini For Treatment Of Diabetes Mellitus-Type 2. Journal of Pharmaceutical Negative Results, 1078–1085. https://doi.org/10.47750/pnr.2023.14.S02.132
Di Benedetto, G., Burgaletto, C., Bellanca, C. M., Munafò, A., Bernardini, R., & Cantarella, G. (2022). Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells, 11(17), 2728. https://doi.org/10.3390/cells11172728
Dizdar, M., Vidic, D., Požgan, F., Štefane, B., & Maksimović, M. (2018). Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine. Scientia Pharmaceutica, 86(2), 11. https://doi.org/10.3390/scipharm86020011
Djaoudene, O., López, V., Cásedas, G., Les, F., Schisano, C., Bachir Bey, M., & Tenore, G. C. (2019). Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food & Function, 10(8), 4953–4965. https://doi.org/10.1039/c9fo01125k
Djaoudene, O., López, V., Cásedas, G., Les, F., Schisano, C., Bey, M. B., & Tenore, G. C. (2019). Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food & Function, 10(8), 4953–4965. https://doi.org/10.1039/C9FO01125K
Eweys, A. S., Zhao, Y.-S., & Darwesh, O. M. (2022a). Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum. Biotechnology Reports, 36, e00768. https://doi.org/10.1016/j.btre.2022.e00768
Eweys, A. S., Zhao, Y.-S., & Darwesh, O. M. (2022b). Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum. Biotechnology Reports, 36, e00768. https://doi.org/10.1016/j.btre.2022.e00768
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
Galimberti, D., & Scarpini, E. (2016). Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opinion on Investigational Drugs, 25(10), 1181–1187. https://doi.org/10.1080/13543784.2016.1216972
García-Ayllón, M.-S., Small, D. H., Avila, J., & Saez-Valero, J. (2011). Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and β-Amyloid. Frontiers in Molecular Neuroscience, 4. https://doi.org/10.3389/fnmol.2011.00022
Garland, E. F., Hartnell, I. J., & Boche, D. (2022). Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Frontiers in Neuroscience, 16. https://www.frontiersin.org/articles/10.3389/fnins.2022.824888
Halabi, M. F., Shakir, R. M., Bardi, D. A., Al-Wajeeh, N. S., Ablat, A., Hassandarvish, P., Hajrezaie, M., Norazit, A., & Abdulla, M. A. (2014). Gastroprotective activity of ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylidene) amino]benzoate against ethanol-induced gastric mucosal ulcer in rats. PloS One, 9(5), e95908. https://doi.org/10.1371/journal.pone.0095908
Haro-González, J. N., Castillo-Herrera, G. A., Martínez-Velázquez, M., & Espinosa-Andrews, H. (2021). Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules, 26(21), 6387. https://doi.org/10.3390/molecules26216387
Hema, T., Poopal, R.-K., Ramesh, M., Ren, Z., & Li, B. (2023). Developmental toxicity of the emerging contaminant cyclophosphamide and the integrated biomarker response (IBRv2) in zebrafish. Environmental Science: Processes & Impacts, 25(8), 1391–1406. https://doi.org/10.1039/D3EM00186E
Jabir, N. R., Khan, F. R., & Tabrez, S. (2018). Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neuroscience & Therapeutics, 24(9), 753–762. https://doi.org/10.1111/cns.12971
John, S. K., & Chandrapragasam, V. (2020). In vitro antioxidant activity of Lactobacillus plantarum against hydrogen peroxide-induced neuronal damage on PC12 cells. Journal of Applied Biology and Biotechnology, 8(5), 84–87. https://doi.org/10.7324/JABB.2020.80511
Kang, M., Park, J., & Yoo, S. (2019). Effect of clove powder on quality characteristics and shelf life of kimchi paste. Food Science & Nutrition, 7(2), 537–546. https://doi.org/10.1002/fsn3.833
Kumar, M. R., Azizi, N. F., Yeap, S. K., Abdullah, J. O., Khalid, M., Omar, A. R., Osman, Mohd. A., Leow, A. T. C., Mortadza, S. A. S., & Alitheen, N. B. (2022). Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer’s Disease. Antioxidants, 11(5), 883. https://doi.org/10.3390/antiox11050883
Lee, H.-S., Yang, E.-J., Lee, T., & Song, K.-S. (2018). Laccase Fermentation of Clove Extract Increases Content of Dehydrodieugenol, Which Has Neuroprotective Activity against Glutamate Toxicity in HT22 Cells. Journal of Microbiology and Biotechnology, 28(2), 246–254. https://doi.org/10.4014/jmb.1709.09052
Lee, S., Han, J.-M., Kim, H., Kim, E., Jeong, T.-S., Lee, W. S., & Cho, K.-H. (2004). Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA:cholesterol acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorganic & Medicinal Chemistry Letters, 14(18), 4677–4681. https://doi.org/10.1016/j.bmcl.2004.06.101
Li, Y., Zhang, Y., Dong, L., Li, Y., Liu, Y., Liu, Y., Liu, L., & Liu, L. (2024). Fermentation of Lactobacillus fermentum NB02 with feruloyl esterase production increases the phenolic compounds content and antioxidant properties of oat bran. Food Chemistry, 437, 137834. https://doi.org/10.1016/j.foodchem.2023.137834
Lombardo, S., & Maskos, U. (2015). Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology, 96, 255–262. https://doi.org/10.1016/j.neuropharm.2014.11.018
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474.
McGleenon, B. M., Dynan, K. B., & Passmore, A. P. (1999). Acetylcholinesterase inhibitors in Alzheimer’s disease. British Journal of Clinical Pharmacology, 48(4), 471–480. https://doi.org/10.1046/j.1365-2125.1999.00026.x
Moslemi, E., Dehghan, P., & Khani, M. (2022). The effect of date seed (Phoenix dactylifera) supplementation on inflammation, oxidative stress biomarkers, and performance in active people: A blinded randomized controlled trial protocol. Contemporary Clinical Trials Communications, 28, 100951. https://doi.org/10.1016/j.conctc.2022.100951
Murugan, S., Natarajan, S., Soundararajan, S., Boobalan, S. K., & Subbiah, M. (2025). Comparative insights into ultraviolet-b radiation-induced biochemical modulations in senna auriculata: a gas chromatography-mass spectrometry profiling study. Asian Journal of Pharmaceutical and Clinical Research, 82–89. https://doi.org/10.22159/ajpcr.2025v18i2.53568
Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2 019/9613090
Ni, H., Peng, L., Gao, X., Ji, H., Ma, J., Li, Y., & Jiang, S. (2019). Effects of maduramicin on adult zebrafish (Danio rerio): Acute toxicity, tissue damage and oxidative stress. Ecotoxicology and Environmental Safety, 168, 249–259. https://doi.org/10.1016/j.ecoenv.2018.10.040
Piruthiviraj, P., Swetha, B. R. M., Balasubramanian, C., Krishnamoorthy, R., Gatasheh, M. K., Ahmad, A., Parthasarathi, R., Pandurangan, P., Bhuvaneshwari, V. K., & Vijayakumar, N. (2024). Exploring the potential: Inhibiting quorum sensing through marine red seaweed extracts – A study on Amphiroa fragilissima. Journal of King Saud University - Science, 36(4), 103118. https://doi.org/10.1016/j.jksus.2024.103118
Plamada, D., & Vodnar, D. C. (2021). Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients, 14(1), 137. https://doi.org/10.3390/nu14010137
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
Ramesh, M., Angitha, S., Haritha, S., Poopal, R.-K., Ren, Z., & Umamaheswari, S. (2020). Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio). Neurotoxicology and Teratology, 82, 106919. https://doi.org/10.1016/j.ntt.2020.106919
Rosemberg, D. B., da Rocha, R. F., Rico, E. P., Zanotto-Filho, A., Dias, R. D., Bogo, M. R., Bonan, C. D., Moreira, J. C. F., Klamt, F., & Souza, D. O. (2010). Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience, 171(3), 683–692. https://doi.org/10.1016/j.neuroscience.2010.09.030
Saryono, Warsinah, Isworo, A., & Sarmoko. (2020). Anti-inflammatory activity of date palm seed by downregulating interleukin-1β, TGF-β, cyclooxygenase-1 and -2: A study among middle age women. Saudi Pharmaceutical Journal, 28(8), 1014–1018. https://doi.org/10.1016/j.jsps.2020.06.024
Saxena, B. (2024). Eugenol as Neuro-Phytomedicine: Recent Trends Pertaining to the Treatment of Neurological Disorders. In NeuroPhytomedicine. CRC Press.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. https://doi.org/10.1016/0003-2697(72)90132-7
Song, L., Li, M., Feng, C., Sa, R., Hu, X., Wang, J., Yin, X., Qi, C., Dong, W., & Yang, J. (2022). Protective effect of curcumin on zebrafish liver under ethanol-induced oxidative stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 258, 109360. https://doi.org/10.1016/j.cbpc.2022.109360
Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods, 11(19), 3094. https://doi.org/10.3390/foods11193094
Umamaheswari, S., Priyadarshinee, S., Bhattacharjee, M., Kadirvelu, K., & Ramesh, M. (2021). Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 281, 128592. https://doi.org/10.1016/j.chemosphere.2020.12 8592
Wang, A. N., Yi, X. W., Yu, H. F., Dong, B., & Qiao, S. Y. (2009). Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing–finishing pigs. Journal of Applied Microbiology, 107(4), 1140–1148. https://doi.org/10.1111/j.1365-2672.2009.04294.x
Wang, J., Xiao, S., Cai, Q., Miao, J., & Li, J. (2023). Antioxidant Capacity and Protective Effects on H2O2-Induced Oxidative Damage in PC12 Cells of the Active Fraction of Brassica rapa L. Foods, 12(10), Article 10. https://doi.org/10.3390/foods12102075
Wang, L., Li, K., Cui, Y., Peng, H., Hu, Y., & Zhu, Z. (2023). Preparation, structural characterization and neuroprotective effects to against H2O2-induced oxidative damage in PC12 cells of polysaccharides from Pleurotus ostreatus. Food Research International, 163, 112146. https://doi.org/10.1016/j.foodres.2022.112146
Zaki, A. G., El-Sayed, E.-S. R., Abd Elkodous, M., & El-Sayyad, G. S. (2020). Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: Recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Applied Microbiology and Biotechnology, 104(11), 4717–4735. https://doi.org/10.1007/s00253-020-10560-9
Zemlan, F. P., Thienhaus, O. J., & Bosmann, H. B. (1989). Superoxide dismutase activity in Alzheimer’s disease: Possible mechanism for paired helical filament formation. Brain Research, 476(1), 160–162. https://doi.org/10.1016/0006-8993(89)91550-3

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)