Article Main

Tarsem Nain Kajal Nagre Navpreet Kaur Shammi Sharma Neha Chawariya Santosh Kumar Tiwari Jaya Parkash Yadav

Abstract

Obesity has emerged as a major health issue worldwide. Current research mainly focuses on how small bioactive compounds can influence the mechanism of transcription regulatory factors involved in the fat accumulation and weight gain process. Lagerstroemia speciosa plant is commonly used in traditional systems of medicine to combat obesity and diabetes. It contains major bioactive compounds, viz. pregnenolone, corosolic acid, fenretidinide, norlargerenol acetate, maslinic acid, olenoic acid and beta-sistosterol. The present study was undertaken to elucidate the role of L. speciosa bioactive compounds in obesity control by targeting FABP-4/ap-2, C/EBP-α, and PPAR-γ transcription factors that play a significant role in adipocyte biology and metabolism. The present study screened twenty-nine bioactive compounds against three targets using Autodock Vina, Autodock Tools. Discovery Studio was utilized to visualize the targeted proteins' ligand and amino acid interaction. In silico approach showed that screened bioactive compounds downregulate the expression of targeted transcriptional regulatory genes involved in the adipocyte differentiation mechanism. Pregnenolone, a major bioactive compound, scored binding free energy of -6.34, -7.58, and -6.22 kcal/mol with C/EBP-α, PPAR-γ, and FABP-4, respectively, compared to standard drug. Findings showed that these bioactive compounds play a crucial role in regulating adipogenesis and differentiation genes, proving their therapeutic importance as antiobesity agent. Although these findings are encouraging, extensive in vivo studies are essential to confirm efficacy, ensure safety, and investigate the therapeutic potential of these compounds for obesity treatment.


 

Article Details

Article Details

Keywords

Bioactive compounds, In-silico, Oesity, Transcriptional regulation (ap2/FABP-4, C/EBP-α and PPAR-γ)

References
Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2020). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663-1675.
Al-Snafi, A. E. (2019). Medicinal value of Lagerstroemia speciosa: An updated review. International Journal of Current Pharmaceutical Research, 11(5), 18-26.
Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., & Khan, S. A. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 1-35.
Alzahrani, F. A., Khan, M. I., Kameli, N., Alsahafi, E., & Riza, Y. M. (2023). Plant-derived extracellular vesicles and their exciting potential as the future of next-generation drug delivery. Biomolecules, 13(5), 839.
Atal, A. K., Choudhary, M., & Budhwar, V. (2022). Ethno pharmacological perspectives of Peroxisome Proliferators Activated Receptors (PPARs) isoform in the treatment of obesity: A comprehensive review. Journal of Biologically Active Products from Nature, 12(4), 291-323.
Bai, N., He, K., Roller, M., Zheng, B., Chen, X., Shao, Z., Zheng, Q. (2008). Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. Journal of Agricultural and Food Chemistry, 56(24), 11668-11674.
Balakrishnan, B. B., Krishnasamy, K., & Choi, K. C. (2018). Moringa concanensis nimmo ameliorates hyperglycemia in 3T3-L1 adipocytes by upregulating PPAR-γ, C/EBP-α via akt signaling pathway and stz-induced diabetic rats. Biomedicine & Pharmacotherapy, 103, 719-728.
Balkrishna, A., Sharma, N., Srivastava, D., Kukreti, A., Srivastava, S., & Arya, V. (2024). Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare. Future Integrative Medicine, 3(1), 35-49.
Banjare, J., & Bhalerao, S. (2016). Obesity associated noncommunicable disease burden. International Journal of Health & Allied Sciences, 5(2), 81-81.
Boughanem, H., Cabrera-Mulero, A., Hernández-Alonso, P., Bandera-Merchán, B., Tinahones, A., Tinahones, F. J. & Macias-Gonzalez, M. (2019). The expression/methylation profile of adipogenic and inflammatory transcription factors in adipose tissue are linked to obesity-related colorectal cancer. Cancers, 11(11), 1629.
Castro, A., Macedo-De la Concha, L., & Pantoja-Meléndez, C. (2017). Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Revista Médica del Hospital General de México, 80(2), 101-105.
Catalioto, R.-M., Maggi, C. A., & Giuliani, S. (2009). Chemically distinct hdac inhibitors prevent adipose conversion of subcutaneous human white preadipocytes at an early stage of the differentiation program. Experimental Cell Research, 315(19), 3267-3280.
Chaturvedi, M., Nagre, K., & Yadav, J. P. (2021). In-silico approach for identification of natural compounds as potential covid 19 main protease (mpro) inhibitors. VirusDisease, 32(2), 325-329.
Chowdhury, M. A. R., Islam, M. R., & Muktadir, M. A. G. (2017). Thrombolytic activity of Lagerstroemia speciosa leaves. Discovery Phytomedicine, 4(4), 41-45.
Claro-Cala, C. M., Jiménez-Altayó, F., Zagmutt, S., & Rodriguez-Rodriguez, R. (2022). Molecular mechanisms underlying the effects of olive oil triterpenic acids in obesity and related diseases. Nutrients, 14(8), 1606.
Daina, A., Michielin, O., & Zoete, V. (2017). Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.
Dearden, J. C., & Hewitt, M. (2021). Prediction of human lethal doses and concentrations of meic chemicals from rodent LD50 values: An attempt to make some reparation. Alternatives to Laboratory Animals, 49(1-2), 10-21.
Devibala, G. (2022). Molecular docking of withaferin a from Withania somnifera with the proteins associated with cancer therapy. Journal of Pharmaceutical Negative Results, 1400-1408.
Dini, I. (2018). Spices and herbs as therapeutic foods. In Food quality: Balancing Health and Disease (pp. 433-469): Elsevier.
Dzhumayevna, J. U. (2024). Cardiovascular risk factors in hypertension in middle-aged patients. American Journal of Biology and Natural Sciences, 1(1), 1-7.
Faridah, F., Mumpuni, E., Purnomo, H., Laksmitawati, D. R., & Simanjuntak, P. (2024). Study of the antiobesity potential of chlorogenic acid through molecular docking. Journal of Social Research, 3(2), 628-639.
Fatima, T., Beigh, M., & Hussain, S. Z. (2018). Obesity: Causes, consequences and management. International Journal of Medical and Health Research, 4(4), 53-58.
Furuhashi, M. (2019). Fatty Acid-Binding Protein 4 in cardiovascular and metabolic diseases. Journal of Atherosclerosis and Thrombosis, 26(3), 216-232.
Gasmi, A., Noor, S., Menzel, A., Pivina, L., & Bjørklund, G. (2021). Obesity and insulin resistance: Associations with chronic inflammation, genetic and epigenetic factors. Current Medicinal Chemistry, 28(4), 800-826.
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). Swisstargetprediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(W1), W32-W38.
Goyal, S., Sharma, M., & Sharma, R. (2022). Bioactive compound from Lagerstroemia speciosa: Activating apoptotic machinery in pancreatic cancer cells. 3 Biotech, 12(4), 96.
Graw, S., Chappell, K., Washam, C. L., Gies, A., Bird, J., Robeson, M. S., & Byrum, S. D. (2021). Multi-omics data integration considerations and study design for biological systems and disease. Molecular Omics, 17(2), 170-185.
Ha, E. E., & Bauer, R. C. (2018). Emerging roles for adipose tissue in cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(8), e137-e144.
Hotamisligil, G. S., & Bernlohr, D. A. (2015). Metabolic functions of fabps—mechanisms and therapeutic implications. Nature Reviews Endocrinology, 11(10), 592-605.
Hou, W., Li, Y., Zhang, Q., Wei, X., Peng, A., Chen, L., & Wei, Y. (2009). Triterpene acids isolated from Lagerstroemia speciosa leaves as α‐glucosidase inhibitors. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(5), 614-618.
Huang, G. H., Zhan, Q., Li, J. L., Chen, C., Huang, D. D., Chen, W. S., & Sun, L. N. (2013). Chemical constituents from leaves of Lagerstroemia speciosa. Biochemical Systematics and Ecology, 51, 109-112.
Hussain, F., Ganguly, A., Hossain, M. S., & Rahman, S. A. (2014). Analgesic and anti-diarrhoeal activities of Lagerstroemia speciosa roots in experimental animal model. Dhaka University Journal of Pharmaceutical Sciences, 13(1), 57-62.
Jakab, J., Miškić, B., Mikšić, Š., Juranić, B., Ćosić, V., Schwarz, D., & Včev, A. (2021). Adipogenesis as a potential antiobesity target: A review of pharmacological treatment and natural products. Diabetes, Metabolic Syndrome and Obesity, 67-83.
Kapoor, S., Waldmann, H., & Ziegler, S. (2016). Novel approaches to map small molecule–target interactions. Bioorganic & Medicinal Chemistry, 24(15), 3232-3245.
Khutami, C., Sumiwi, S. A., Khairul Ikram, N. K., & Muchtaridi, M. (2022). The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. International Journal of Molecular Sciences, 23(4), 2056.
Kolakul, P., & Sripanidkulchai, B. (2017). Phytochemicals and anti-aging potentials of the extracts from Lagerstroemia speciosa and Lagerstroemia floribunda. Industrial Crops and Products, 109, 707-716.
Konappa, N., Udayashankar, A. C., Krishnamurthy, S., Pradeep, C. K., Chowdappa, S., & Jogaiah, S. (2020). GC–MS Analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Scientific Reports, 10(1), 16438.
Koshio, K., Murai, Y., Sanada, A., Taketomi, T., Yamazaki, M., Kim, T. S., Iwashina, T. (2012). Positive relationship between anthocyanin and corosolic acid contents in leaves of Lagerstroemia speciosa pars. Tropical Agriculture and Development, 56(2), 49-52.
Kumari, V. C., Ramu, R., Huligere, S. S., Patil, S. M., Nayakvadi, S., Bijoor, S., Wong, L. S. (2025). Fermented sugarcane juice-derived probiotic Levilactobacillus brevis ramulab54 enhances lipid metabolism and glucose homeostasis through PPAR-γ activation. Frontiers in Microbiology, 15, 1502751.
Lee, J. E., Cho, Y. W., Deng, C. X., & Ge, K. (2020). Mll3/MLL4-associated PAGR1 regulates adipogenesis by controlling induction of C/EBP β and C/EBP δ. Molecular and Cellular Biology, 40(17), e00209-00220.
Merzoug, A., Boucherit, H., & Chikhi, A. (2024). Application of molecular docking and drug-likeness prediction for the discovery of new antidiabetic agents. Pharmakeftiki, 36(1).
Michler, S., Schöffmann, F. A., Robaa, D., Volmer, J., & Hinderberger, D. (2024). Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a ligand’s perspective. Journal of Biological Chemistry, 107396.
Montaigne, D., Butruille, L., & Staels, B. (2021). PPAR control of metabolism and cardiovascular functions. Nature Reviews Cardiology, 18(12), 809-823.
Moseti, D., Regassa, A., & Kim, W. K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International journal of molecular sciences, 17(1), 124.
Nxumalo, K. A. (2023). Formulation, characterization and application of bio-inspired nano/composites coatings for postharvest preservation of horticultural crops. University of Johannesburg.
Pant, R., Firmal, P., Shah, V. K., Alam, A., & Chattopadhyay, S. (2021). Epigenetic regulation of adipogenesis in development of metabolic syndrome. Frontiers in Cell and Developmental Biology, 8, 619888.
Ragasa, C. Y., Ngo, H. T., & Rideout, J. A. (2005). Terpenoids and sterols from Lagerstroemia speciosa. Journal of Asian Natural Products Research, 7(1), 7-12.
Rani, V., Deep, G., Singh, R. K., Palle, K., & Yadav, U. C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148, 183-193.
Rashid, M. R. (2021). Benzimidazole molecule as new anticancer agent; design, synthesis and admet prediction. Journal of the Chilean Chemical Society, 66(2), 5164-5182.
Redka, M., Baumgart, S., Kupczyk, D., Kosmalski, T., & Studzińska, R. (2023). Lipophilic studies and in silico ADME profiling of biologically active 2-aminothiazol-4 (5 h)-one derivatives. International Journal of Molecular Sciences, 24(15), 12230.
Rudrapal, M., Gogoi, N., Chetia, D., Khan, J., Banwas, S., Alshehri, B., Walode, S. G. (2022). Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-COV-2 potential: Molecular docking, md simulation and drug-likeness/ADMET studies. Saudi Journal of Biological Sciences, 29(4), 2432-2446.
Sahu, B. D., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2015). Lagerstroemia speciosa Attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: Possible role of NRF2/HO-1. Cardiovascular Toxicology, 15, 10-22.
Sarma, S., Sockalingam, S., & Dash, S. (2021). Obesity as a multisystem disease: Trends in obesity rates and obesity‐related complications. Diabetes, Obesity and Metabolism, 23, 3-16.
Shaikh, F., Tai, H. K., Desai, N., & Siu, S. W. (2021). Ligtmap: Ligand and structure-based target identification and activity prediction for small molecular compounds. Journal of Cheminformatics, 13(1), 44.
Shen, H., Yang, Y., Kung, W., Chen, Y., Wu, M., Cheng, Y., & Lee, Y. M. (2019). Raloxifene inhibits adipose tissue inflammation and adipogenesis through Wnt regulation in ovariectomized rats and 3 T3-L1 cells. Journal of Biomedical Science, 26, 1-12.
Simu, S. Y., Ahn, S., Castro-Aceituno, V., Singh, P., Mathiyalagan, R., Jiménez-Pérez, Z. E., Kim, Y. J. (2019). Gold nanoparticles synthesized with fresh Panax ginseng leaf extract suppress adipogenesis by downregulating PPARγ/CEBPα signaling in 3T3-L1 mature adipocytes. Journal of Nanoscience and Nanotechnology, 19(2), 701-708.
Sirikhansaeng, P., Tanee, T., Sudmoon, R., & Chaveerach, A. (2017). Major phytochemical as γ-sitosterol disclosing and toxicity testing in Lagerstroemia species. Evidence-Based Complementary and Alternative Medicine, 2017.
Song, J. E., Ko, H. J., & Kim, A. S. (2024). Comparison of the efficacy of antiobesity medications in real-world practice. Drug Design, Development and Therapy, 845-858.
Tandrasasmita, O. M., Berlian, G., & Tjandrawinata, R. R. (2021). Molecular mechanism of DLBS3733, a bioactive fraction of Lagerstroemia speciosa (L.) pers., on ameliorating hepatic lipid accumulation in HEPG2 cells. Biomedicine & Pharmacotherapy, 141, 111937.
Waldman, H. S., Smith, J. W., Lamberth, J., Fountain, B. J., & McAllister, M. J. (2019). A 28-day carbohydrate-restricted diet improves markers of cardiometabolic health and performance in professional firefighters. The Journal of Strength & Conditioning Research, 33(12), 3284-3294.
Wei Chiang Chan, E., Wong, S. K., & Chan, H. T. (2022). An overview of the phenolic constituents and pharmacological properties of extracts and compounds from Lagerstroemia speciosa leaves. Tropical Journal of Natural Product Research, 6(4).
Yin, H., Yang, X., Liu, S., Zeng, J., Chen, S., Zhang, S., Zhao, Y. T. (2022). Total flavonoids from Lagerstroemia speciosa (L.) pers inhibits TNF-α-induced insulin resistance and inflammatory response in 3T3-L1 adipocytes via MAPK and NF-КB signaling pathways. Food Science and Technology, 42, e45222.
Yue, Z., Xu, Y., Cai, M., Fan, X., Pan, H., Zhang, D., & Zhang, Q. (2024). Floral elegance meets medicinal marvels: Traditional uses, phytochemistry, and pharmacology of the genus Lagerstroemia L. Plants, 13(21), 3016.
Zaiou, M., El Amri, H., & Bakillah, A. (2018). The clinical potential of adipogenesis and obesity-related micrornas. Nutrition, Metabolism and Cardiovascular Diseases, 28(2), 91-111.
Zhang, J.-j., & Kang, W. (2014). Volatiles from flowers of Lagerstroemia caudata by HS-SPME-GC-MS. Chemistry of Natural Compounds, 50, 933-934.
Zolotarjova, J., Ten Velde, G., & Vreugdenhil, A. (2018). Effects of multidisciplinary interventions on weight loss and health outcomes in children and adolescents with morbid obesity. Obesity Reviews, 19(7), 931-946.
Żulińska, S., Strosznajder, A. K., & Strosznajder, J. B. (2024). Current view on PPAR-α and its relation to neurosteroids in alzheimer’s disease and other neuropsychiatric disorders: Promising targets in a therapeutic strategy. International Journal of Molecular Sciences, 25(13), 7106.
Section
Research Articles

How to Cite

In-silico antiobesity activity of Lagerstroemia speciosa (L.) bioactive compounds by targeting transcriptional regulators PPAR-γ, C/EBP-α, and FABP-4/ap-2 genes. (2025). Journal of Applied and Natural Science, 17(2), 830-844. https://doi.org/10.31018/jans.v17i2.6643