Article Main

Smaranika Mania Sonali Nayak Monalisa Mohanty

Abstract

Heavy metal contamination, driven by both natural and human activities, poses significant environmental risks. Nickel, a key heavy metal, harms plants and animals when its concentration exceeds safe levels. This study investigates the phytotoxic effects of various nickel concentrations on the biochemical parameters such as chlorophyll, carotenoid, proline, protein and catalase activity of Sesbania species. A pot experiment was conducted with nickel concentrations of 50, 100, 200, and 300 ppm alongside a control group (0 ppm), using NiCl2 as the source of nickel and the observations were made over 60 days. Results showed a significant decline in shoot length, from 63.4 cm to 12.2 cm, with growth inhibition observed at 200 ppm to 300 ppm. Chlorophyll and carotenoid concentrations decreased 6-7 times in plants exposed to 300 ppm nickel treatments compared to control. Proline accumulation was doubled with 100 ppm nickel treatments, which gradually declined to nearly 70%  in plants with 300 ppm Ni treatment due to retarded growth. The protein concentration was decreased from 10.1 mg/gm fr. wt. to 7.9 mg/gm fr. wt. with increased Ni treatment from 100 ppm to 200 ppm whereas catalase activity was decreased from 6.4 nKat/mg protein to 2.2 nKat/mg protein with increased Ni treatment of 50 ppm to 100 ppm. Common sesban seedlings' protein and proline content showed a strong positive correlation (r=0.895). Overall, the study highlights the harmful effects of elevated nickel concentrations on Sesbania sesban, demonstrating its negative impact on plant growth and biochemical parameters.


 

Article Details

Article Details

Keywords

Carotenoid, Catalase, Chlorophyll, Heavy metal, Phytotoxicity, Proline

References
Angon, P. B., Islam, Md. S., KC, S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
aslam, m. (2017). specific role of proline against heavy metals toxicity in plants. International Journal of Pure & Applied Bioscience, 5(6), 27–34. https://doi.org/10.18782/2320-7051.6032
Atta, N., Shahbaz, M., Farhat, F., Maqsood, M. F., Zulfiqar, U., Naz, N., Ahmed, M. M., Hassan, N. U., Mujahid, N., Mustafa, A. E.-Z. M. A., Elshikh, M. S., & Chaudhary, T. (2024). Proline-mediated redox regulation in wheat for mitigating nickel-induced stress and soil decontamination. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-50576-5.
Baran, U., and Ekmekçi, Y. (2022). Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. Environmental Science and Pollution Research, 29(3), 4446-4460.
Banerjee, A., & Roychoudhury, A. (2020). Plant responses to environmental nickel toxicity. Plant micronutrients: deficiency and toxicity management, 101-111.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/bf00018060
Bohuslavska, L. V., Shupranova, L. V., Holoborodko, K. K., & Kunakh, O. M. (2022). Amino acid composition of proteins of meristem cells of maize roots under the combined action of lead, cadmium and nickel ions. Ecology and Noospherology, 33(2), 68-73. https://doi.org/10.15421/032211
Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
Chance B, Maehly AC. [1936] Assay of catalases and peroxidases. Methods in Enzymology. 1955;764–75. https://doi.org/10.1002/9780470110171.ch14
Chen, C., Huang, D., & Liu, J. (2009). Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. CLEAN – Soil, Air, Water, 37(4–5), 304–313. Portico. https://doi.org/10.1002/clen.200800199.
Chen, X., Kumari, D., Cao, C. J., Plaza, G., & Achal, V. (2019). A review on remediation technologies for nickel-contaminated soil. Human and Ecological Risk Assessment: An International Journal, 26(3), 571–585. https://doi.org/10.1080/10807039.2018.1539639.
Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53.
Doğru, A., Altundağ, H., & Dündar, M. Ş. (2021). The effect of nickel phytotoxicity on photosystem II activity and antioxidant enzymes in barley. Acta Biologica Szegediensis, 65(1), 1–9. https://doi.org/10.14232/abs.2021.1.1-9
Dubey, D., & Pandey, A. (2011). Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int. J. Sci. Nat, 2(2), 395-401.
Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U., & Roy, S. (2018). Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling & Behavior, 13(8). https://doi.org/10.1080/15592324.20 18.1460048.
El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N.K., Yousaf, B., Sharma, A., Sarkar, B., Cai, Y. and Chang, S.X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. J. Hazar. Mater. 419, 126421. doi: 10.1016/j.jhazmat.2021.126421. 
Gajewska, E., Skłodowska, M., Słaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50(4), 653–659. https://doi.org/10.1007/s10535-006-0102-5.
Gajewska, E., Witusińska, A., & Bernat, P. (2024). Nickel-induced oxidative stress and phospholipid remodeling in cucumber leaves. Plant Science, 348, 112229.
Gopal, R., & Nautiyal, N. (2012). Growth, Antioxidant Enzymes Activities, and Proline Accumulation in Mustard Due to Nickel. International Journal of Vegetable Science, 18(3), 223–234. https://doi.org/10.1080/19315260.20 11.619641
Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11. https://doi.org/10.1093/jexbot/53.366.1
Helaoui, S., Hattab, S., Mkhinini, M., Boughattas, I., Majdoub, A., & Banni, M. (2022). The Effect of Nickel Exposure on Oxidative Stress of Vicia faba Plants. Bulletin of Environmental Contamination and Toxicology, 108(6), 1074–1080. https://doi.org/10.1007/s00128-022-03535-1
Helaoui, S., Mkhinini, M., Boughattas, I., Bousserrhine, N., & Banni, M. (2023). Nickel Toxicity and Tolerance in Plants. Heavy Metal Toxicity and Tolerance in Plants, 231–250. Portico. https://doi.org/10.1002/9781119906506.ch11
Jablonkai, I. (2022). Molecular Defense Mechanisms in Plants to Tolerate Toxic Action of Heavy Metal Environmental Pollution. Plant Defense Mechanisms. https://doi.org/10.5772/intechopen.102330
Javeed, H. R., Naz, N., Ali, H., Hashem, A., Abd Allah, E. F., & El Sabagh, A. (2024). Comparative Analysis of Salt and Heavy Metal Stress Responses in Citrullus colocynthis (L.) Schrad and Cucumis melo subspecies agrestis (Naud) for Phytoremediation Applications. Applied Ecology and Environmental Research, 22(2), 1391–1413. https://doi.org/10.15666/aeer/2202_13911413
Kahlon, S. K., Sharma, G., Julka, J. M., Kumar, A., Sharma, S., & Stadler, F. J. (2018). Impact of heavy metals and nanoparticles on aquatic biota. Environmental Chemistry Letters, 16(3), 919–946. https://doi.org/10.1007/s10311-018-0737-4
Khan, I., Bilal, A., Shakeel, K., & Malik, F. T. (2022). Effects of nickel toxicity on various organs of the Swiss albino mice. Uttar Pradesh Journal of Zoology. https://doi.org/10.56557/upjoz/2022/v43i143090
Khudhur, S. A., & Albarzinji, L. M. (2022). Some Enzymatic and Non-enzymatic Antioxidants Response under Nickel and Lead Stress for Some Fabaceae Trees. Aro-The Scientific Journal of Koya University, 10(2), 124–130. https://doi.org/10.14500/aro.11033
Kovacik, J., & Vydra, M. (2024). The impact of nickel on plant growth and oxidative balance. Physiologia Plantarum, 176(6), e14595.
Kumar, S., Wang, M., Liu, Y., Fahad, S., Qayyum, A., Jadoon, S. A., ... & Zhu, G. (2022). Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. Frontiers in Plant Science, 13, 1054924.
Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Plant Cell Membranes, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Lin, Y. C., & Kao, C. H. (2007). Proline accumulation induced by excess nickel in detached rice leaves. Biologia Plantarum, 51(2), 351–354. https://doi.org/10.1007/s10535-007-0071-3
Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., Witters, N., Thewys, T., & Tack, F. M. G. (2010). The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78(1), 35–41. https://doi.org/10.1016/j.chemosphere.20 09.08.015
Mustafa, A., Zulfiqar, U., Mumtaz, M. Z., Radziemska, M., Haider, F., Holátko, J., Naveed, M., Ali, H., Kintl, A., Saeed, Q., Kučerík, J., & Brtnicky, M. (2023). Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere, 328, 138574. https://doi.org/10.1016/j.chemosphere.2023.138574
Ningombam, L., Hazarika, B. N., Yumkhaibam, T., Heisnam, P., & Singh, Y. D. (2024). Heavy metal priming plant stress tolerance deciphering through physiological, biochemical, molecular and omics mechanism. South African Journal of Botany, 168, 16–25. https://doi.org/10.1016/j.sajb.2024.02.032,
Pandhair, V., & Sekhon, B. S. (2006). Reactive oxygen species and antioxidants in plants: an overview. Journal of plant Biochemistry and Biotechnology, 15, 71-78.
Pandey, N. & Pathak, G. C. (2006). Nickel alters antioxidative defense and water status in green gram. Indian journal of plant physiology, 11(2):113-118.
Pudake, R. N., Chauhan, N., & Kole, C. (Eds.). (2019). Nanoscience for sustainable agriculture (Vol. 711). Cham: Springer International Publishing. ISBN: 978-3-319-97851-2, 978-3-319-97852-9. https://doi.org/10.1007/978-3-319-97852-9
Reddy, H. S., Al-kalbani, H., Al-Qalhati, S., Al-Kahtani, A. A., Al Hoqani, U., Najmul Hejaz Azmi, S., Kumar, A., Kumar, S., & Saradhi Settaluri, V. (2024). Proline and other physiological changes as an indicator of abiotic stress caused by heavy metal contamination. Journal of King Saud University - Science, 36(8), 103313. https://doi.org/10.1016/j.jksus.2024.103313
Rizwan, M., Usman, K., & Alsafran, M. (2024). Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. Chemosphere, 357, 142028. https://doi.org/10.1016/j.chemosphere.2024.142028
Rodriguez, N., Carusso, S., Juárez, Á., El Kassisse, Y., Rodriguez Salemi, V., & de Cabo, L. (2023). Effect of stabilization time and soil chromium concentration on Sesbania virgata growth and metal tolerance. Journal of Environmental Management, 345, 118701. https://doi.org/10.1016/j.jenvman.2023.118701
Satpathy, M. R., & Samantaray, S. (2023). Assessment of impact of nickel stress on the accumulation, pigments and protein content of water hyacinth (Pontederia crassipes L.). South Asian Journal of Agricultural Sciences, 3(1), 145–148. https://doi.org/10.22271/27889289.2023.v3.i1b.82
Scornik O. A. (1984). Role of protein degradation in the regulation of cellular protein content and amino acid pools. Federation proceedings, 43(5), 1283–1288.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037.
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment-A review. Plant physiology and biochemistry, 132, 641-651.
Stetsenko, L. A., Shevyakova, N. I., Rakitin, V. Yu., & Kuznetsov, Vl. V. (2011). Proline protects Atropa belladonna plants against nickel salt toxicity. Russian Journal of Plant Physiology, 58(2), 337–343. https://doi.org/10.1134/s102144371102021x.
Syurin S, and Nikanov A.N.. (2024). Health risks from exposure to industrial aerosols of soluble and insoluble nickel compounds.. Hygiene and sanitation. 103(8):876-883. https://doi.org/10.47470/0016-9900-2024-103-8-876-883.
Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195–206. Portico. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
Vischetti, C., Marini, E., Casucci, C., & De Bernardi, A. (2022). Nickel in the environment: Bioremediation techniques for soils with low or moderate contamination in European Union. Environments, 9(10), 133.
Yu, H., Li, W., Liu, X., Song, Q., Li, J., & Xu, J. (2024). Physiological and molecular bases of the nickel toxicity responses in tomato. Stress Biology, 4(1), 25. https://doi.org/10.1007/s44154-024-00162-0
Section
Research Articles

How to Cite

Impaired Growth with declined pigment content and biochemical toxicity induced by Nickel (Ni+2) in sixty days exposed Sesbania sesban seedlings. (2025). Journal of Applied and Natural Science, 17(2), 926-933. https://doi.org/10.31018/jans.v17i2.6605