Article Main

Mohammad Abdullah Almashhadani Warka Saeed Qassim

Abstract

Trichoderma spp. is a common soil fungus that penetrates plant roots and engages with various microorganisms and plants. The present study aimed to determine the phylogenetic relationships of rhizosphere isolates of Trichoderma spp. obtained from the local soil in Mosul in the north of Iraq utilizing the sequence of the internal transcribed spacer-1 (ITS-1) region of the ribosomal DNA of eight Trichoderma spp.. Approximately 192 samples were collected between March and October 2023 from the rhizospheric soil of Potato )Solanum tuberosum), Tomato (Solanum lycopersicum), Wheat (Triticum aestivum), Barley (Hordeum vulgare), Eucalyptus (Eucalyptus globulus) and Citrus (Citrus limon (. Only 5.8% of the rhizosphere samples belonged to Trichoderma spp. The samples were identified based on morphological characteristics and molecular techniques. All the selected isolates amplified a similar band (660 bp). The nucleotide sequences were then analyzed, and a phylogenetic tree was constructed to compare the present isolates with the closest isolates submitted to the National Center for Biotechnology Information (NCBI). Isolates were submitted to NCBI as new strains under the accession numbers: Trichoderma harzianum (PP968131), T. longibrachiatum (PP977534), T. harzianum (PP977576), T. longibrachiatum (PP989798), Trichoderma longibrachiatum (PP989800), T. longibrachiatum (PP989803), T. longibrachiatum (PP989804), and T. harzianum (PP989805). This study expands the NCBI database with novel Trichoderma strains, enhancing fungal genetic resources globally. These new entries provide unique genomic data, potentially revealing valuable traits, resolving taxonomic ambiguities within Trichoderma, and improving the reliability of the NCBI database for future studies.


 

Article Details

Article Details

Keywords

Transcribed spacer-1, Trichoderma longibrachiatum, Trichoderma harzianum, ITS1, ITS4

References
Aghajani, H., Bari, E. & Bahmani, M., 2018. Influence of relative humidity and temperature on cultivation of Pleurotus species. Maderas Cienc y Tecnol 20, 571–578. http://dx.doi.org/10.4067/S0718-221X2018005004501
Al-Ameri, H.A., 2022. Defining Mycotoxins Associated with Wheat Grains in Mosul Silo by ELISA. Journal of Hunan University Natural Sciences, 49(4). https://doi.org/10.55463/issn.1674-2974.49.4.36
Alfiky, A. & Weisskopf, L., 2021. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. Journal of Fungi, 7(1), p.61. https://doi.org/10.3390/jof7010061
Al-healy, N.A. & Al-Taee, W.S., 2023. Biodiversity of some Species of Alternaria Fungi Causing Spotting in Ornamental Plants. Rafidain Journal of Science, 32(1), pp.90-101.
Allaga, H., Zhumakayev, A., Büchner, R., Kocsubé, S., Szűcs, A., Vágvölgyi, C., Kredics, L. & Hatvani, L., 2021. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy, 11(12), p.2434. https://www.mdpi.com/2073-4395/11/12/2434
Allawi, Y. & Hmoshi, R.M., 2022. Isolation and Identification of Penicillium rubens from the Local Strain in Mosul, Iraq, and Investigation of Potassium Phosphate Effect on its Growth. Archives of Razi Institute, 77(1), p.421. doi: 10.22092/ARI.2021.356684.1896
Almashhadani, M.A. & Qassim, W.S., 2025. Bioactivity of silver nanoparticles produced by the aqueous extract of local Trichoderma longibrachiatum isolates against some types of MDR bacteria. Regulatory Mechanisms in Biosystems, 16(1), pp.e25037-e25037. https://doi.org/10.1542 1/0225037
Al-Rubaiey, W.L. & Al-Juboory, H.H., 2020. Molecular identification of Trichoderma longibrachiatum causing green mold in Pleurotus eryngii culture media. Plant Archives, 20(1), pp.181-184. http://dx.doi.org/10.13140/RG.2.2.31424.35842
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J., 1990. Basic local alignment search tool. Journal of molecular biology, 215(3), pp.403-410.. https://doi.org/10.1016/S0022-2836(05)80360-2
Alwadai, A.S., Al Wahibi, M.S., Alsayed, M.F., Alshaikh, N.A., Perveen, K. & Elsayim, R., 2024. Molecular characterization of plant growth-promoting Trichoderma from Saudi Arabia. Scientific Reports, 14(1), p.23236. https://doi.org/10.1038/s41598-024-73762
Bensons, A.E.B., 2005. Microbiology Applications” 9thed., Laboratory Manual in general, New York.
Cai, F. & Druzhinina, I.S., 2021. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal diversity, 107(1), pp.1-69. https://doi.org/10.1007/s13225-020-00464-4
Calleros, L., Panzera, F., Bargues, M.D., Monteiro, F.A., Klisiowicz, D.R., Zuriaga, M.A., Mas-Coma, S. & Pérez, R., 2010. Systematics of Mepraia (Hemiptera-Reduviidae): cytogenetic and molecular variation. Infection, Genetics and Evolution, journal of molecular epidemiology and evolutionary genetics in infectious diseases, 10(2), 221–228. https://doi.org/10.1016/j.meegid.2009.1 2.002
Carro-Huerga, G., Mayo-Prieto, S., Rodríguez-González, Á., Cardoza, R.E., Gutiérrez, S. & Casquero, P.A., 2023. Vineyard management and physicochemical parameters of soil affect native Trichoderma populations, sources of biocontrol agents against Phaeoacremonium minimum. Plants, 12(4), p.887. https://doi.org/10.3390/plants12040887
Damgaard, J., Andersen, N.M. & Meier, R., 2005. Combining molecular and morphological analyses of water strider phylogeny (Hemiptera–Heteroptera, Gerromorpha): effects of alignment and taxon sampling. Systematic Entomology, 30(2), pp.289-309. https://doi.org/10.1111/j.1365-3113.2004.00275.x
Druzhinina, I.S., Kopchinskiy, A.G. & Kubicek, C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47(2), pp.55-64. https://doi.org/10.1007/S10267-006-0279-7
Eman, A.A.F., Mohamed, I.A., Allah, S.F., Shams, A.H. & Elsokkary, I.H., 2023. Trichoderma species: An overview of current status and potential applications for sustainable agriculture. Indian Journal of Agricultural Research, 57(3), pp.273-282.http://dx.doi.org/10.18805/IJARe.AF-751
Haque, Z., Iqbal, M.S., Ahmad, A., Khan, M.S., Singh, S.P. & Prakash, J., 2020. Explorations of Tolerant Trichoderma spp. as Plant Growth Promoter and Biocontrol Agent against Colletotrichum falcatum. Journal of Pure & Applied Microbiology, 14(1). https://doi.org/10.22207/JPAM.14.1.34
Harnelly, E., Kusuma, H.I., Thomy, Z. & Samingan, S., 2022. Internal Transcribed Spacer (Its) Gene As An Accurate Dna Barcode For Identification Of Macroscopic Fungus In Aceh. Biodiversitas Journal Of Biological Diversity, 23(5). https://doi.org/10.13057/biodiv/d230514
Hastuti, U.S. & Rahmawati, I., 2016. The antagonism mechanism of Trichoderma spp. towards Fusarium solani mold. Interaction. https://doi.org/10.21776/ub.jpacr.2016.005.03.260
Hillis, D.M., Moritz, C., Porter, C.A. & Baker, R.J., 1991. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science, 251(4991), pp.308-310. https://doi.org/10.1126/science.1987647
Kale, G.J., Rewale, K.A., Sahane, S.P. & Magar, S.J., 2018. Isolation of Trichoderma spp. from the rhizospheric soils of tomato crop grown in Marathwada region. Journal of Pharmacognosy and Phytochemistry, 7(3), pp.3360-3362.
Kindermann, J., El-Ayouti, Y., Samuels, G.J. & Kubicek, C.P., 1998. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genetics and Biology, 24(3), pp.298-309. https://doi.org/10.1006/fgbi.1998.1049
Kredics, L., Naeimi, S., Hatvani, L., Vágvölgyi, C., Cai, F., Druzhinina, I.S. & Manczinger, L., 2021. ‘The Good, the Bad and the Ugly’in the shades of green: the genus Trichoderma in the spotlight. Indian Phytopathology, 74(2), pp.403-411. https://doi.org/10.1007/s42360-021-00352-0
Kubiak, A., Wolna-Maruwka, A., Pilarska, A.A., Niewiadomska, A. & Piotrowska-Cyplik, A., 2023. Fungi of the Trichoderma genus: future perspectives of benefits in sustainable agriculture. Applied Sciences, 13(11), p.6434. https://doi.org/10.3390/app13116434
Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A. & Baroncelli, R., 2019. Evolution and comparative genomics of the most common Trichoderma species. BMC genomics, 20, pp.1-24.https://doi.org/10.1186/s12864-019-5680-7
Li, X., Liao, Q., Zeng, S., Wang, Y. & Liu, J., 2025. The use of Trichoderma species for the biocontrol of postharvest fungal decay in fruits and vegetables: Challenges and opportunities. Postharvest Biology and Technology, 219, p.113236.
https://doi.org/10.1016/j.postharvbio.2024.113236
Marcilla, A., Bargues, M.D., Ramsey, J.M., Magallon-Gastelum, E., Salazar-Schettino, P.M., Abad-Franch, F., Dujardin, J.P., Schofield, C.J. & Mas-Coma, S., 2001. The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Molecular Phylogenetics and Evolution, 18(1), pp.136-142. https://doi.org/10.1006/mpev.2000.0864
Matei, G.M. & Matei, S., 2024. The Influence Of Tomato Root Exudates On Structure And Diversity of Rhizosphere Communities of Bacteria And Fungi. Scientific Papers. Series B. Horticulture, 68(1). http://dx.doi.org/10.13140/RG.2.2.34643.39202
Mohammed, M. & Al-Taie, B., 2024. Isolation and identification of aquatic fungi from some water samples in Mosul City. Egyptian Journal of Aquatic Biology and Fisheries, 28(5), pp.793-804. https://dx.doi.org/10.21608/ejabf.2024.380430
Pokhrel, A., Adhikari, A., Oli, D., Paudel, B., Pandit, S., GC, B. & Tharu, B.R.R., 2022. Biocontrol potential and mode of action of Trichoderma against fungal plant diseases. Acta Scientific AGRICULTURE (ISSN: 2581-365X), 6(10). http://actascientific.com/ASAG/pdf/ASAG-06-1184.pdf
Prahl, R.E., Khan, S. & Deo, R.C., 2021. The role of internal transcribed spacer 2 secondary structures in classifying mycoparasitic Ampelomyces. PloS One, 16(6), p.e0253772.https://doi.org/10.1371/journal.pone.0253772
Prameeladevi, T., Prabhakaran, N., Kamil, D., Toppo, R.S. & Tyagi, A., 2018. Trichoderma pseudokoningii identified based on morphology was re-identified as T. longibrachiatum through molecular characterization. Indian phytopathology, 71, pp.579-587. https://doi.org/10.1007/s42360-018-0067-2
Qassim, W.S., Mohamed, A.H. & Hamdoon, Z.K., 2024. Biological control of root rot fungi in cowpea. SABRAO J. Breed. Genet, 56(1), pp.302-309. http://doi.org/10.54910/sabrao2024.56.1.27.
Qassim, W. S., Mohamad I.J. & Saadi ,A.M., 2024. study of the inhibitory effect of the cloves Syzygium aromaticum on the growth of Candida albicans . Journal of Bioscience and Applied Research, 10( 6): 180 -194. https://dx.doi.org/10.21608/jbaar.2024.335177.1106
Ranga, A.R., Khayum, S.A. & Patibanda, A.K., 2017. Genetic Diversity of Trichoderma sp. from rhizosphere regions of different cropping systems using RAPD markers. International Journal of Current Microbiology and Applied Sciences, 6(7), pp.1618-1624. https://doi.org/10.20546/ijcmas.2017.607.195
Rashmi, S., Radhika, M.P. & Savitha, M.K., 2020. Antagonistic activity of rhizosphere fungi against early blight of tomato caused by Alternaria alternata. Journal of Advanced Scientific Research, 11(03), pp.326-329.
Shahid, M., Srivastava, M., Kumar, V., Singh, A., Sharma, A., Pandey, S., Rastogi, S., Pathak, N. & Srivastava, A.K., 2014. Phylogenetic diversity analysis of Trichoderma species based on internal transcribed spacer (ITS) marker. African Journal of Biotechnology, 13(3). https://doi.org/10.5897/AJB2013.13075
Shao, Y., Gu, S., Peng, H., Zhang, L., Li, S., Berendsen, R.L., Yang, T., Dong, C., Wei, Z., Xu, Y. & Shen, Q., 2025. Synergic interactions between Trichoderma and the soil microbiomes improve plant iron availability and growth. npj Biofilms and Microbiomes, 11(1), p.56. https://doi.org/10.1038/s41522-025-00684-z
Stace, C.A., 1989. Plant taxonomy and biosystematics. Cambridge University Press.
Tamura, K., Stecher, G. and Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), pp.3022-3027. https://doi.org/10.1093/molbev/msab120
Susila, E., Maulina, F. & Emilda, D., 2023. Characterization and identification of Trichoderma on shallots isolated from three elevation regions in West Sumatra, Indonesia. Biodiversitas, 24(4), pp.2064-2071. https://doi.org/10.13057/biodiv/d240416
Tang, G.T., Li, Y., Zhou, Y., Zhu, Y.H., Zheng, X.J., Chang, X.L., Zhang, S.R. & Gong, G.S., 2022. Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China. Scientific reports, 12(1), p.21709. https://doi.org/10.1038/s41598-022-25223-0
TariqJaveed, M., Farooq, T., Al-Hazmi, A.S., Hussain, M.D. & Rehman, A.U., 2021. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. Journal of Invertebrate Pathology, 183, p.107626. https://doi.org/10.1016/j.jip.2021.107626
Turner, B.L., 1998. Plant systematics: beginnings and endings. Aliso: A Journal of Systematic and Floristic Botany, 17(2), pp.189-200. 10.5642 / aliso.19981702.07
Tyśkiewicz, R., Nowak, A., Ozimek, E. & Jaroszuk-Ściseł, J., 2022. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), p.2329. https://doi.org/10.3390/ijms23042329
Wheeler, W.C., Bang, R. & Schuh, R.T., 1993. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Insect Systematics & Evolution, 24(2), pp.121-137. https://doi.org/10.1163/187631293x00235
White, R. & Arndt, V., 1991. Process writing: Longman handbook for language teachers. London: ASCD.
Xue, M., Wang, R., Zhang, C., Wang, W., Zhang, F., Chen, D., Ren, S., Manman, Z., Hou, J. & Liu, T., 2021. Screening and identification of Trichoderma strains isolated from natural habitats in China with potential agricultural applications. BioMed research international, 2021(1), p.7913950. https://doi.org/10.1155/2021/7913950
Yurkov, A.P., Kryukov, A.A., Gorbunova, A.O., Shcherbakov, A.V. & Zhurbenko, P.M., 2020. Identification of arbuscular mycorrhizal fungi in soils of the North Caucasus based on Illumina MiSeq data for ITS1 and ITS2 regions. In BIO web of Conferences (Vol. 23, p. 02013). EDP Sciences. https://doi.org/10.1051/bioconf/20202302013
Section
Research Articles

How to Cite

Phenotypic and molecular diagnosis of Trichoderma spp.  isolated from the local soil of Nineveh Governorate, Iraq. (2025). Journal of Applied and Natural Science, 17(2), 934-942. https://doi.org/10.31018/jans.v17i2.6595