Article Main

Abhishek Gunna Harshal Avinashe Kanchan Sharma K.J.S. Chary Smita Tiwari Nidhi Dubey

Abstract

Agriculture underwent significant changes with the Green Revolution, which substantially increased food production; however, with the global population projected to reach 11.2 billion by 2050, the demand for food is expected to continue rising. Researchers are employing novel technologies, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9) genome editing, to address this issue. The information is gathered using keywords such as "green revolution," "CRISPR-Cas9," "sustainable agriculture," "gene editing," and "crop improvement" from authenticated sources, including Google Scholar, PubMed, and NCBI.  This review explores the potential of CRISPR-Cas9 to unlock new possibilities for crop improvement, with a focus on enhancing resistance to pests and diseases. Creating crops with inbuilt defenses could reduce chemical pesticide use, improving environmental and human health. Increased stress tolerance can be achieved by genetically altering crops to resist heat, salt, drought, and other environmental challenges, thereby ensuring food security. CRISPR-Cas9 also enables biofortification, enhancing crops with essential vitamins and minerals, thereby addressing dietary inadequacies and malnutrition. Introducing genes that enable nitrogen fixation within crops may reduce reliance on synthetic fertilizers, promoting environmentally friendly farming.  The application of CRISPR-Cas9 in agriculture is also subject to regulatory frameworks, potential unexpected consequences, and ethical considerations, all of which require careful evaluation. This review highlights these aspects, emphasizing that responsible research and development are essential for the ethical and long-term use of this technology. It attempts to illustrate the transformative capability of this technology for creating a more sustainable and food-secure future by critically assessing its possibilities and challenges.


 

Article Details

Article Details

Keywords

CRISPR-Cas9, Crop improvement, Gene editing, Green revolution, Sustainable agriculture

References
Ahmad, S., Tang, L., Shahzad, R., Mawia, A. M., Rao, G. S., Jamil, S.& Tang, S. (2021). CRISPR-based crop improvements: A way forward to achieve zero hunger. Journal of Agricultural and Food Chemistry, 69(30), 8307-8323.
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157.
Callaway, E. (2020). Gene-edited crops: Proceed with caution. Nature, 580 (7799), 22-23. doi:10.1038/d41586-020-00400-1
Carluccio, A. V., David, L. C., Claußen, J., Sulley, M., Adeoti, S. R., Abdulsalam, T., ... & Stavolone, L. (2022). Set up from the beginning: The origin and early development of cassava storage roots. Plant, Cell & Environment, 45(6), 1779-1795.
Chen, L., Park, J. E., Paa, P., Rajakumar, P. D., Prekop, H. T., Chew, Y. T., ... & Chew, W. L. (2021). Programmable C: G to G: C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications, 12(1), 1384.
Doman, J. L., Raguram, A., Newby, G. A.& Liu, D. R. (2020). Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology, 38(5), 620-628.
Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J. A.& Han, F. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics, 43(1), 37-43.
Hsu, P. D., Lander, E. S.& Zhang, F. (2020). A roadmap for responsible international research in gene editing. Nature, 577(7790), 326-331. doi:10.1038/s41586-020-20927-y
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A.& Charpentier, E. (2012). A programmable dual-–RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
Khan, M. A., Imran, I., Ali, S., Uzair, M., Baig, M. H.& Shahwar, D. (2021). CRISPR/Cas9: A new approach for developing salt-tolerant crops. Environmental Science and Pollution Research, 28(4), 3805-3824. doi:10.1007/s11356-020-10805-y
Koblan, L. W., Arbab, M., Shen, M. W., Hussmann, J. A., Anzalone, A. V., Doman, J. L., ... & Liu, D. R. (2021). Efficient C• G-to-G• C base editors developed using CRISPR screens, target-library analysis, and machine learning. Nature Biotechnology, 39(11), 1414-1425.
Leong, K. Y. B., Chan, Y. H., Abdullah, W. M. A. N. W., Lim, S. H. E.& Lai, K. S. (2018). The CRISPR/Cas9 system for crop improvement: Progress and prospects. Next Gener. Plant Breed., 129, 129-145.
Wang, L., Wang, L., Zhou, Y.& Duanmu, D. (2017). Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Progress in Molecular Biology and Translational Science, 149, 187-213.
Abe, K., Araki, E., Suzuki, Y., Toki, S.& Saika, H. (2018). Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 131, 58-62.
Adane, M.& Alamnie, G. (2024). CRISPR/Cas9 mediated genome editing for crop improvement against abiotic stresses: Current trends and prospects. Functional & Integrative Genomics, 24, Article 199. https://doi.org/10.1007/s10142-024-01480-2
Afzal, S., Mubeen, M., Hussain, S., Ali, M., Javeed, H. M. R., Al-Ashkar, I., ... & Jatoi, W. N. (2023). Modern breeding approaches for climate change. In climate change impacts on agriculture: Concepts, Issues and Policies for Developing Countries (pp. 299-313). Cham: Springer International Publishing.
Ahmad, M. (2023). Plant breeding advancements with “CRISPR-Cas” genome editing technologies will assist future food security. Frontiers in Plant Science, 14, 1133036.
Ainouz, I., Bai, X.& Yu, H. (2022). CRISPR-Cas9-based genome editing for biofortification: A new era in functional crop development. Trends in Plant Science, 37(3), 810-824. doi:10.1016/j.tplants.2021.10.011
Ali, A., Ölmez, F., Altaf, M. T., Liaqat, W., Umar, U. U. D.& Iqbal, J. (2023). Advanced and sustainable approaches in sugarcane crop improvements with reference to environmental stresses. In Biotechnology and Omics Approaches for Bioenergy Crops, (pp. 155-182). Singapore: Springer Nature Singapore.
Ali, E.& Zhang, K. (2023). CRISPR-mediated technology for seed oil improvement in rapeseed: Challenges and future perspectives. Frontiers in Plant Science, 14, 1086847.
Ambika, Bhati, S.& Kumar, R. (2024). Plant Breeding Using the CRISPR-Cas9 System for Food security and facing climate change. In Plant Genome Editing Technologies: Speed Breeding, Crop Improvement and Sustainable Agriculture (pp. 149-181). Singapore: Springer Nature Singapore.
Ansori, A. N., Antonius, Y., Susilo, R. J., Hayaza, S., Kharisma, V. D., Parikesit, A. A., ... & Burkov, P. (2023). Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J., 3(2), e184.
Barman, H. N., Sheng, Z., Fiaz, S., Zhong, M., Wu, Y., Cai, Y., ... & Hu, P. (2019). Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biology, 19, 1-9.
Basu, U., Riaz Ahmed, S., Bhat, B. A., Anwar, Z., Ali, A., Ijaz, A., ... & Mushtaq, M. (2023). A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Frontiers in Genetics, 13, 866976.
Bazaz, M. R.& Dehghani, H. (2022). From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sciences, 295, 120409.
Bhat, M. A., Jan, S., Shah, S. A.& Jan, A. T. (2024). Genome Editing for Microbial Pathogens Resistance in Crops. Applications of Genome Engineering in Plants, 339-368.
Chang, Z., Yan, W., Liu, D., Chen, Z., Xie, G., Lu, J., ... & Tang, X. (2015). Research progress on CRISPR/Cas. Journal of Agricultural Biotechnology, 23(9), 1196-1206.
Chen, F., Chen, L., Yan, Z., Xu, J., Feng, L., He, N., ... & Liu, C. (2024). Recent advances of CRISPR-based genome editing for enhancing staple crops. Frontiers in Plant Science, 15, 1478398.
Chen, P. J.& Liu, D. R. (2023). Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 24(3), 161-177.
Chilcoat, D., Liu, Z. B.& Sander, J. (2017). Use of CRISPR/Cas9 for crop improvement in maize and soybean. Progress in Molecular Biology and Translational Science, 149, 27-46.
Diplomatist. (2024, November 30). Agri-Genome Editing for Climate Resilience and Sustainability in the Global South.
Dong, G.& Fan, Z. (2024). CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. Crop Health, 2(1), 2.
Ebrahimi, V.& Hashemi, A. (2024). CRISPR-based gene editing in plants: Focus on reagents and their delivery tools. BioImpacts, BI, 15, 30019.
Egorova, A. A., Zykova, T. E., Kostina, N. E., Saboiev, I. A., Koloshina, K. A., Filipenko, E. A., ... & Gerasimova, S. V. (2024). Reduction in Cold-Induced Sweetening by Cas9 Endonuclease-Mediated Knockout of the POTATO VACUOLAR INVERTASE 1 Gene in the Cultivar ‘Symfonia’. Potato Research, 1-23.
Evenson, R. E.& Gollin, D. (2003). Assessing the impact of the green revolution, 1960 to 2000. Science, 300(5620), 758–762. https://doi.org/10.1126/science.1078710
FAO. (2023). The State of Food and Agriculture 2023: Revealing the true cost of food to transform agrifood systems. Rome: FAO.
Feng, C., Gao, H., Zhou, Y., Jing, Y., Li, S., Yan, Z., ... & Li, H. (2023). Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. Frontiers in Plant Science, 14, 1162014.
Freitas-Alves, N. S., Moreira-Pinto, C. E., Távora, F. T., Paes-de-Melo, B., Arraes, F. B., Lourenço-Tessutti, I. T., ... & Grossi-de-Sa, M. F. (2024). CRISPR/Cas genome editing in soybean: Challenges and new insights to overcome existing bottlenecks. Journal of Advanced Research.
Gaillochet, C., Develtere, W.& Jacobs, T. B. (2021). CRISPR screens in plants: approaches, guidelines, and future prospects. The Plant Cell, 33(4), 794-813.
Gao, H., Mutti, J., Young, J. K., Yang, M., Schroder, M., Lenderts, B., ... & Chilcoat, N. D. (2020). Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Frontiers in Plant Science, 11, 535.
Gao, W., Long, L., Tian, X., Xu, F., Liu, J., Singh, P. K., ... & Song, C. (2017). Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science, 8, 290219.
Garg, A., Sharma, N., Sharma, K., Singh, A., Kohli, D.& Jain, P. K. (2020). CRISPR-Cas9-mediated engineering of symbiotic nitrogen fixation in legumes. Trends in Plant Science, 25(12), 1106-1118. doi:10.1016/j.tplants.2020.07.006
Garg, S., Sharma, R., Singh, A., & Kumar, P. (2020). Engineering symbiotic nitrogen fixation in soybean through targeted disruption of the NF symbiosis 1 (NFs1) gene cluster using CRISPR/Cas9. Plant Biotechnology Journal, 18(4), 765–774. https://doi.org/10.1111/pbi.13227
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I.& Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471.
Geng, Y., Deng, Z.& Sun, Y. (2016). An insight into the protospacer adjacent motif of Streptococcus pyogenes Cas9 with artificially stimulated RNA-guided-Cas9 DNA cleavage flexibility. RSC Advances, 6(40), 33514-33522.
Ghoshal, B. (2024). A birds-eye-view on CRISPR-Cas system in agriculture. The Nucleus, 67(1), 89-96.
Guo, W. F., Guo, D. D., Li, F., Shang, S. Z., Li, T. W., Tang, Y. C., ... & Gao, W. (2023). Efficient genome editing in cotton using the virus-mediated CRISPR/Cas9 and grafting system. Plant Cell Reports, 42(11), 1833-1836.
Gupta, A., Hua, L., Zhang, Z., Yang, B. & Li, W. (2023). CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnology Journal, 21(3), 536-548.
Haji, S. B.& Natesan, S. (2023). Perspective on CRISPR-Cas9 gene editing technology: Paving the way for second Green Revolution. Biotechnology and Genetic Engineering Reviews, 39(1), 343-363.
Hsu, P. D., Lander, E. S. & Zhang, F. (2020). A roadmap for responsible international research in gene editing. Nature, 577(7790), 326-331. doi:10.1038/s41586-020-20927-y
Hu, C., Liu, F., Sheng, O., Yang, Q., Dou, T., Dong, T., ... & Bi, F. (2023). Efficient and transgene-free genome editing in banana using a REG-2 promoter–driven gene-deletion system. Molecular Horticulture, 3(1), 16.
Huang, Z.& Liu, G. (2023). Current advancement in the application of prime editing. Frontiers in Bioengineering and Biotechnology, 11, 1039315.
Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. (2017). Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience, 67, 385–390. doi: 10.1093/biosci/bix010
Hussin, S. H., Liu, X., Li, C., Diaby, M., Jatoi, G. H., Ahmed, R., ... & Iqbal, M. A. (2022). An Updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production. Sustainability, 14(19), 12285.
Ijaz, M., Khan, F., Zaki, H. E., Khan, M. M., Radwan, K. S., Jiang, Y., ... & Li, B. (2023). Recent trends and advancements in CRISPR-based tools for enhancing resistance against plant pathogens. Plants, 12(9), 1911.
Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M.& Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications, 467(1), 76-82.
Jacobs, T. B., LaFayette, P. R., Schmitz, R. J. & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 1-10.
Johansen, I. E., Liu, Y., Jørgensen, B., Bennett, E. P., Andreasson, E., Nielsen, K. L., ... & Petersen, B. L. (2019). High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Scientific Reports, 9(1), 17715.
Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M.& Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science, 8, 292352.
Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M.& Siksnys, V. (2015). Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biology, 16, 1-13.
Kaur, N., Qadir, M., Francis, D. V., Alok, A., Tiwari, S.& Ahmed, Z. F. (2025). CRISPR/Cas9: a sustainable technology to enhance climate resilience in major Staple Crops. Frontiers in Genome Editing, 7, 1533197.
Kaur, N., Qadir, M., Francis, D. V., Alok, A., Tiwari, S. & Ahmed, Z. F. R. (2025). CRISPR/Cas9: A sustainable technology to enhance climate resilience in major staple crops. Frontiers in Genome Editing, 7, Article 1533197. https://doi.org/10.3389/fgeed.2025.1533197
Khan, Z., Khan, S. H., Ahmed, A., Iqbal, M. U., Mubarik, M. S., Ghouri, M. Z., ... & Azhar, M. T. (2023). Genome editing in cotton: challenges and opportunities. Journal of Cotton Research, 6(1), 3.
Kieu, N. P., Lenman, M., Wang, E. S., Petersen, B. L.& Andreasson, E. (2021). Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Scientific Reports, 11(1), 4487.
Kim, D., Alptekin, B. & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics, 18, 31-41.
Koblan, L. W., Arbab, M., Shen, M. W., Hussmann, J. A., Anzalone, A. V., Doman, J. L., ... & Liu, D. R. (2023). Author Correction: Efficient C• G-to-G• C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 41(11), 1655-1655.
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424.
Kumar, M., Prusty, M. R., Pandey, M. K., Singh, P. K., Bohra, A., Guo, B.& Varshney, R. K. (2023). Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science, 14, 1157678.
Kumar, R., Das, J., Puttaswamy, R. K., Kumar, M., Balasubramani, G. & Prasad, Y. G. (2024). Targeted genome editing for cotton improvement: prospects and challenges. The Nucleus, 67(1), 181-203.
Kumar, T., Wang, J. G., Xu, C. H., Lu, X., Mao, J., Lin, X. Q., ... & Liu, H. B. (2024). Genetic engineering for enhancing sugarcane tolerance to biotic and abiotic stresses. Plants, 13(13), 1739.
Kumar, V., Bahadur, V., Sharma, S. K., Saini, P. K.& Tripathi, A. M. (2023). Genome editing in agriculture: CRISPR/Cas9’s promise in creating resilient and high‑yielding crops. Acta Botanica Plantae, 2(3), 17–21. https://doi.org/10.51470/ABP.2023.02.03.17
Kumar, V., Mishra, R., Prasad, K. & Jain, P. K. (2020). CRISPR for fungal disease resistance in crop plants. Current Genetics, 17(3), 335-352. doi:10.100
Li, J., Liu, Y., Kong, L., Xu, E., Zou, Y., Zhang, P., ... & Chen, X. (2023). An intracellular transporter OsNRAMP7 is required for distribution and accumulation of iron into rice grains. Plant Science, 336, 111831.
Li, J., Wei, F., Wang, J., Chen, Q.& Zhao, L. (2020). CRISPR/Cas9‑mediated editing of the OsSWEET11 gene confers bacterial blight resistance in rice. International Journal of Molecular Sciences, 21(8), 4206. https://doi.org/10.3390/ijms21084206
Li, J., Zhang, C., He, Y., Li, S., Yan, L., Li, Y., ... & Xia, L. (2023). Plant base editing and prime editing: the current status and future perspectives. Journal of Integrative Plant Biology, 65(2), 444-467.
Li, J., Zhang, H., Si, X., Tian, Y., Chen, K., Liu, J., ... & Gao, C. (2017). Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics= Yi Chuan Xue Bao, 44(9), 465-468.
Li, L. & Xiao, L. (2020). Advances in the application of CRISPR/Cas9 technology in main oil crops. Plant Physiol. J., 56(3), 373-381.
Li, Q., Huang, Y., Xu, Z.& Sun, Y. (2020). Enhancing tomato disease resistance through promoter editing of the endogenous defense gene SlNPR1 via CRISPR/Cas9. Horticulture Research, 7, 115. https://doi.org/10.1038/s41438-020-00385-x
Li, R., Li, R., Li, X., Fu, D., Zhu, B., Tian, H., ... & Zhu, H. (2018a). Multiplexed CRISPR/Cas9‐mediated metabolic engineering of γ‐aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal, 16(2), 415-427.
Li, R., Xu, J., Chen, K.& Wang, P. (2017). CRISPR/Cas9‑mediated base editing of the OsPSY1 gene increases beta‑carotene biosynthesis in rice. Journal of Agricultural and Food Chemistry, 65(12), 2501–2508. https://doi.org/10.1021/jf3032348
Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., ... & Gao, C. (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 602(7897), 455-460.
Li, T., Chen, W., Yang, M. & Deng, X. (2019). CRISPR/Cas9‑mediated disruption of the tomato SlRIN gene delays fruit ripening and extends shelf life. Postharvest Biology and Technology, 149, 111–119. https://doi.org/10.1016/j.postharvbio.2019.03.014
Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., ... & Zhu, H. (2018b). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9, 559.
Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., ... & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582-585.
Long, L., Guo, D. D., Gao, W., Yang, W. W., Hou, L. P., Ma, X. N., ... & Song, C. P. (2018). Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 14, 1-9.
Lukasiewicz, A. (2023). Multiplex CRISPR/Cas9 editing of susceptibility genes for durable resistance to late blight disease in potato (Doctoral dissertation, Ghent University).
Ly, D. N. P., Iqbal, S., Fosu-Nyarko, J., Milroy, S.& Jones, M. G. (2023). Multiplex CRISPR-Cas9 gene-editing can deliver potato cultivars with reduced browning and acrylamide. Plants, 12(2), 379.
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., ... & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8(8), 1274-1284.
Marotkar, S., Hirapure, P. R. A. D. I. P., Paranjape, S. H. W. E. T. A.& Upadhye, V. I. J. A. Y. (2020). CRISPR/Cas9 technology for crop improvement: A new weapon for Indian agricultural threats. Plant Cell Biotechnology and Molecular Biology, 21, 1-9.
Nadakuduti, S. S., Starker, C. G., Voytas, D. F., Buell, C. R.& Douches, D. S. (2019). Genome editing in potato with CRISPR/Cas9. Plant Genome Editing with CRISPR Systems: Methods and Protocols, 183-201.
Naeem, M.& Alkhnbashi, O. S. (2023). Current bioinformatics tools to optimize CRISPR/Cas9 experiments to reduce off-target effects. International Journal of Molecular Sciences, 24(7), 6261.
Naglaa A, A., Hamwieh, A., Radwan, K., Mahmoud, N. F.& Baum, M. (2023). CRISPR genome editing to address food security and climate changes.
Ndudzo, A., Makuvise, A. S., Moyo, S. & Bobo, E. D. (2024). CRISPR-Cas9 genome editing in crop breeding for climate change resilience: Implications for smallholder farmers in Africa. Journal of Agriculture and Food Research, 101132.
Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D.& Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew-resistant tomato by genome deletion. Scientific Reports, 7(1), 482.
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., ... & Kondo, A. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353(6305), aaf8729.
OECD. (2024). Innovation for a sustainable and resilient green revolution in africa. OECD Publishing.
Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N. S., Tucker, E. J., ... & Whitford, R. (2019). CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905-1913.
Okuzaki, A., Ogawa, T., Koizuka, C., Kaneko, K., Inaba, M., Imamura, J.& Koizuka, N. (2018). CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiology and Biochemistry, 131, 63-69.
Oz, M. T., Altpeter, A., Karan, R., Merotto, A.& Altpeter, F. (2021). CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 3, 673566.
Pacesa, M., Pelea, O. & Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 187(5), 1076-1100.
Pingali, P. (2023). Are the lessons from the green revolution relevant for agricultural growth and food security in the twenty-first century. Agricultural development in Asia and Africa, 21-32.
Pingali, P. L. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109
Prado, G. S., Rocha, D. C., Santos, L. N. D., Contiliani, D. F., Nobile, P. M., Martinati-Schenk, J. C., ... & Souza, A. A. D. (2024). CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. Frontiers in Plant Science, 14, 1331258.
Qi, W., Zhu, T., Tian, Z., Li, C., Zhang, W.& Song, R. (2016). High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology, 16, 1-8.
Rahim, A. A., Uzair, M., Rehman, N., Fiaz, S., Attia, K. A., Abushady, A. M., ... & Khan, M. R. (2024). CRISPR/Cas9 mediated TaRPK1 root architecture gene mutagenesis confers enhanced wheat yield. Journal of King Saud University-Science, 36(2), 103063.
Ramirez, J., Nguyen, L. T., Patel, S. & Martinez, R. (2020). Improved banana shelf life through CRISPR/Cas9 knockout of the MaETR1 gene reduces ethylene sensitivity. Plant Cell Reports, 39(7), 967–976. https://doi.org/10.1007/s00299-020-02456-y
Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., ... & Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546), 186-191.
Rasheed, A., Gill, R. A., Hassan, M. U., Mahmood, A., Qari, S., Zaman, Q. U.& Wu, Z. (2021). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Current Issues in Molecular Biology, 43(3), 1950-1976.
Raza, Hassan, Muhammad Ashar Abdullah, Samar Khaliq, Muhammad Haider Sajjad, Mehboob Elahi, Muhammad Raffay Khan, & Abdullah Siddique. 2024. “Role of CRISPR in Crop Improvement: A Review”. Asian Journal of Research in Agriculture and Forestry 10 (2):12-19.
Ron, M.& Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. The Plant Cell, 16(6), 1604-1615.
Rouatbi, N., McGlynn, T.& Al-Jamal, K. T. (2022). Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: An overview. Biomaterials Science, 10(13), 3410-3432.
Saber Sichani, A., Ranjbar, M., Baneshi, M., Torabi Zadeh, F.& Fallahi, J. (2023). A review on advanced CRISPR-based genome-editing tools: base editing and prime editing. Molecular Biotechnology, 65(6), 849-860.
Saikia, B., S, R., Debbarma, J., Maharana, J., Sastry, G. N.& Chikkaputtaiah, C. (2024). CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. Frontiers in Plant Science, 15, 1304381.
Saini, H., Thakur, R., Gill, R., Tyagi, K.& Goswami, M. (2023). CRISPR/Cas9-gene editing approaches in plant breeding. GM Crops & Food, 14(1), 1-17.
Santillán Martínez, M. I., Bracuto, V., Koseoglou, E., Appiano, M., Jacobsen, E., Visser, R. G., ... & Bai, Y. (2020). CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 20, 1-13.
Santosh Kumar, V. V., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V.& Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26, 1099-1110.
Saravanan, K., Praveenkumar, K., Vidya, N., Gowtham, K.& Saravanan, M. (2021). Enhancement of Agricultural Crops: A CRISPR/Cas9-Based Approach. In Vegetable Crops-Health Benefits and Cultivation, IntechOpen.
Shaheen, N., Ahmad, S., Alghamdi, S. S., Rehman, H. M., Javed, M. A., Tabassum, J. & Shao, G. (2023). CRISPR-Cas system, a possible “Savior” of rice threatened by climate change: an updated review. Rice, 16(1), 39.
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., ... & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686-688.
Shawky, A., Hatawsh, A., Al-Saadi, N., Farzan, R., Eltawy, N., Francis, M., ... & Abdelrahman, M. (2024). Revolutionizing tomato cultivation: CRISPR/Cas9 mediated biotic stress resistance. Plants, 13(16), 2269.
Shendekar, S., Mangla, S., Gore, V., Meshram, M.& Raut, D. (2024). The CRISPR Revolution: Editing plant genomes for abiotic stress resilience and a better tomorrow. Biotechnology and Biological Sciences, 93.
Shi, H., Lin, Y., Lai, Z., Yiyin, D. O.& Huang, P. (2018). Research progress on CRISPR/Cas9-mediated genome editing technique in plants. Chin. J. Appl. Environ. Biol, 3, 640-650.
Singh, C., Kumar, R., Sehgal, H., Bhati, S., Singhal, T., Gayacharan, ... & Kumar, R. (2023). Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Frontiers in Genetics, 14, 1085024.
Steinert, J., Schiml, S., Fauser, F. & Puchta, H. (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. The Plant Journal, 84(6), 1295-1305.
Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., ... & Xia, L. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in plant science, 8, 298.
Surya Krishna, S., Harish Chandar, S. R., Ravi, M., Valarmathi, R., Lakshmi, K., Prathima, P. T., ... & Appunu, C. (2023). Transgene-Free Genome Editing for Biotic and Abiotic Stress Resistance in Sugarcane: Prospects and Challenges. Agronomy, 13(4), 1000.
Tang, Y., Zhang, Z., Yang, Z.& Wu, J. (2023). CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants. Journal of Experimental Botany, 74(12), 3518-3530.
Tiwari, J. K., Singh, A. K.& Behera, T. K. (2023). CRISPR/Cas genome editing in tomato improvement: Advances and applications. Frontiers in Plant Science, 14, 1121209.
Tripathi, J. N.& Tripathi, L. (2024). Using CRISPR-Cas9 genome editing to enhance disease resistance in banana. CABI Reviews, 19(1).
Tripathi, L., Ntui, V. O.& Tripathi, J. N. (2022). Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. International Journal of Molecular Sciences, 23(7), 3619.
Tuncel, A., Pan, C., Clem, J. S., Liu, D.& Qi, Y. (2025). CRISPR–Cas applications in agriculture and plant research. Nature Reviews Molecular Cell Biology, 1-23.
Tussipkan, D.& Manabayeva, S. A. (2021). Employing CRISPR/Cas technology for the improvement of potato and other tuber crops. Frontiers in Plant Science, 12, 747476.
UN. (2024). State of Food Security and Nutrition in the World Report. (Cited in Diplomatist, 2024, for 2023 hunger statistics).
Upadhyay, S. K., Kumar, J., Alok, A.& Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, 3(12), 2233-2238.
Verma, V., Kumar, A., Partap, M., Thakur, M.& Bhargava, B. (2023). CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Frontiers in Plant Science, 14, 1122940.
Vidya, N., & Arun, M. (2023). Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 1-20.
Vu, B.N., Vu, T.V., Yoo, J.Y., Nguyen, N.T., Ko, K.S., Kim, J.Y. & Lee, K.O. (2023) CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. Frontiers in Plant Science 14, 1271368.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., ... & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One, 11(4), e0154027.
Wang, J., Gan, S., Zheng, Y., Jin, Z., Cheng, Y. & Liu, J. (2022). Banana somatic embryogenesis and biotechnological application. Tropical Plants, 1(1), 1-13.
Wang, L., Wang, L., Zhou, Y.& Duanmu, D. (2017). Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Progress in Molecular Biology and Translational Science, 149, 187-213.
Wang, M., Li, H., Yang, L.& Liu, W. (2020). CRISPR/Cas9 genome editing for powdery mildew resistance in wheat via knockout of the Mlo1 gene. Crop Journal, 8(3), 400–412. https://doi.org/10.1016/j.cj.2020.06.002
Wang, Y., Chen, Z., Park, S.& Kim, H. (2018). Targeted mutagenesis of the tomato SlEIX gene enhances resistance to late‑blight disease. Journal of Plant Pathology, 100(2), 234–242. https://doi.org/10.1007/s42360-018-0061-8
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C.& Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947-951.
Xu, P., Zhao, B., Liu, J.& Li, Y. (2018). Editing of the OsPPAC2 gene improves drought tolerance in rice. Plant Biotechnology Journal, 16(5), 984–993. https://doi.org/10.1111/pbi.12891
Xu, Y., Chen, Y., Liu, G.& Zhou, Y. (2017). Knock‑in mediated CRISPR/Cas9 editing of the endogenous ALS gene promoter confers herbicide tolerance in rice. Molecular Plant, 10(8), 1023–1032. https://doi.org/10.1016/j.molp.2017.03.009
Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., ... & Payasi, D. K. (2023). Genome editing and improvement of abiotic stress tolerance in crop plants. Life, 13(7), 1456.
Yang, J., Fang, Y., Wu, H., Zhao, N., Guo, X., Mackon, E., ... & Li, R. (2023). Improvement of resistance to rice blast and bacterial leaf streak by CRISPR/Cas9-mediated mutagenesis of Pi21 and OsSULTR3; 6 in rice (Oryza sativa L.). Frontiers in Plant Science, 14, 1209384.
Yao, D., Zhou, J., Zhang, A., Wang, J., Liu, Y., Wang, L., ... & Qu, X. (2023). Advances in CRISPR/Cas9-based research related to soybean [Glycine max (Linn.) Merr] molecular breeding. Frontiers in Plant Science, 14, 1247707.
Younas, A., Riaz, N., Rashid, M., Tufail, A., Hyder, S.& Noreen, Z. (2024). CRISPR/Cas System for Achieving Abiotic Stress Tolerance. OMICs‐based Techniques for Global Food Security, 213-231.
Zhai, R., Huang, X., Chen, F.& Wang, S. (2020). CRISPR/Cas9‑mediated knockout of ZmZAP10.2 enhances heat tolerance in maize by boosting heat shock protein production. Theoretical and Applied Genetics, 133(5), 1231–1240. https://doi.org/10.1007/s00122-020-03520-8
Zhang, D., Xu, F., Wang, F., Le, L.& Pu, L. (2024). Synthetic biology and artificial intelligence in crop improvement. Plant Communications.
Zhang, F. (2019). Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 52, e6.
Zhang, J., Zhang, H., Li, S., Li, J., Yan, L. & Xia, L. (2021). Increasing yield potential through manipulating an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. Journal of Integrative Plant Biology, 63(9), 1649-1663.
Zhang, L., Zhang, H., Duan, B.& Li, X. (2022). CRISPR/Cas9‑mediated knockout of the Spudap1 gene enhances the nutritional quality of cassava by elevating storage protein levels. Frontiers in Plant Science, 13, 678912. https://doi.org/10.3389/fpls.2022.678912
Zhang, L., Zhang, H., Liu, Y., Zhou, J., Shen, W., Liu, L., ... & Chen, X. (2020). A CRISPR–Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis. Biotechnology and Bioengineering, 117(2), 531-542.
Zhang, S., Li, Y., Tang, L.& Zhao, X. (2020). Base editing of the tomato SlDREB2C gene confers enhanced salt tolerance via improved osmo‑protection. Horticulture Research, 7(1), 50. https://doi.org/10.1038/s41438-020-00409-1
Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K. J., Yang, B. & Li, W. (2019). Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 17(8), 1623-1635.
Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M. A., ... & Zhang, X. (2021). Publisher Correction: Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 39(1), 115.
Zhou, J., Luan, X., Liu, Y., Wang, L., Wang, J., Yang, S., ... & Yao, D. (2023). Strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding. Plants, 12(7), 1478.
Zhou, J., Xin, X., He, Y., Chen, H., Li, Q., Tang, X., ... & Zhang, Y. (2019). Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 38, 475-485.
Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., ... & Gao, C. (2022). An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 40(9), 1394-1402.
Section
Research Articles

How to Cite

Unlocking the green revolution CRISPR-cas9 and the future of sustainable plant breeding: A review. (2025). Journal of Applied and Natural Science, 17(4), 1520-1538. https://doi.org/10.31018/jans.v17i4.6583