Article Main

M. Naga Jayasudha M. Kiranmai Reddy A. Madhavi

Abstract

Drought has a significant impact on agricultural practices in arid and semi-arid regions, reducing the quality of soil and impairing crop productivity. Innovative strategies are required to improve soil health and utilize optimum resources to overcome this situation. Despite improvements in fertilizer technology, there remains an essential research gap in understanding the synergistic effects of nano-fertilizers and hydrogels in mitigating water scarcity and enhancing nutrient efficiency. The present study explored the ability of Nano DAP fertilizer and hydrogels to improve soil parameters and the productivity of Solanum lycopersicum L (tomato) under drought conditions of Ananthapuramu district of Andhra Pradesh for two consecutive years (2022-2024). Five amendment combinations were analyzed: a control, traditional DAP fertilizer, DAP with hydrogel, Nano DAP, and a combination of Nano DAP and hydrogel. Of all these treatments, Nano DAP with hydrogel has shown significant improvement (p<0.05), an enhanced water-holding capacity (78±0.85 & 79±1.22%), and a reduction in bulk density (1.18±0.051 & 1.15±0.03g/cc). Moreover, the treatment also improved the soil nitrogen by 199±15.92 & 220±29.1 kg/ha and organic carbon content (0.25±0.017 & 0.026±0.013%, p<0.05) respectively. The treatment also enhanced soil microbial activity, further improving micronutrient availability. The key findings display the potential of combining Nano DAP, hydrogel, and DAP with hydrogel as a sustainable approach to mitigate drought impacts, enhance soil properties, and improve agricultural productivity. The study emphasizes the need to further investigate nano-fertilizer and hydrogel technologies as scalable solutions for resilient and sustainable agriculture in drought-prone regions.


 

Article Details

Article Details

Keywords

Diammonium phosphate, Drought, Hydrogel, Nano-diammonium phosphate, Solanum lycopersicum L

References
Ahanger, M.A., Qi M, Huang, Z., Xu X, Begum, N, Qin C, Zhang ,C, Ahmad, N, Mustafa, N.S. & Ashraf, M. (2021) Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxico. and Environ. Saf. 216,112-195 https://doi.org/10.1016/j.ecoenv.2021.112195
Ahmadian, K., Jalilian, J. & Pirzad, A. (2021) Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agric. Water Manag. 244,106-544 https://doi.org/10.1016/j.agwat.2020.106544
Besharati, J., Shirmard , M., Meftahizadeh, H., Ardakani, M.D., & Ghorbanpour, M. (2022) Changes in growth and quality performance of Roselle (Hibiscus sabdariffa L.) in response to soil amendments with hydrogel and compost under drought stress. S Afr J Bot. 145, 334-347 https://doi.org/10.1016/j.sajb.2021.03.018
Chuma, G.B., Mulalisi, B., Mondo, J.M. Ndeko, A. B., Bora, F.S., Bagula, E. M., Mushagalusa, G.N. & Civava, R. (2022)  Di-ammonium phosphate (DAP) and plant density improve grain yield, nodulation capacity, and profitability of peas (Pisum sativum L.) on ferralsols in eastern D.R. Congo. CABI Agric Biosci 3, 65. https://doi.org/10.1186/s43170-022-00130-6Dhiman, J., Prasher, S.O., ElSayed, E., Patel, R.M., Nzediegwu, C., &, Mawof, A. (2021) Effect of hydrogel based soil amendments on heavy metal uptake by spinach grown with wastewater irrigation. J. Clean. Prod. 311,127-644 https://doi.org/10.1016/j.jclepro.2021.127644
Dimkpa, C.O., Deng ,C., Wang ,Y., Adisa, I.O., Zhou, J., & White ,J.C. (2023) Chitosan and zinc oxide nanoparticle-enhanced tripolyphosphate modulate phosphorus leaching in soil. ACS AST. 3,487-498 https://doi.org/10.1021/acsagscitech.3c00054
Dou, Z., Bini Farias, M.V., Chen, W., He, D., Hu ,Y., & Xie, X. (2023) Highly degradable chitosan-montmorillonite (MMT) nano-composite hydrogel for controlled fertilizer release. FESE. 17, 53 https://doi.org/10.1007/s11783-023-1653-9
El-Beltagi, H. S., Shehata, W. F., Ahmad, A., Hassim, M. F., & Hadid, M. L. (2023). Role of silica nanoparticles in enhancing drought tolerance of cereal crops. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51, 13480-13480..
George, D., Maheswari, P.U., & Begum, K.M.S. (2019) Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol. 132,784-794 https://doi.org/10.1016/j.ijbiomac.2019.0 4.008
Hafez, E. M., Osman, H. S., El-Razek, U. A. A., Elbagory, M., Omara, A. E. D., Eid, M. A., & Gowayed, S. M. (2021). Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants, 10, 894. https://doi.org/10.3390/plants100 50894
Jabro, J.D., &, Mikha, M.M. (2021). Determination of Infiltration Rate and Bulk Density in Soils. Soil Health Series, 69-77.
Kiani, M., Hernandez-Ramirez, G., Quideau, S., Smith, E., Janzen, H., Larney, F.J., & Puurveen, D. (2017) Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric. Ecosyst. Environ. 248,123-135 https://doi.org/10.1016/j.agee.2017.07.018
Motamedi, E., Safari, M., & Salimi, M. (2023). Improvement of tomato yield and quality using slow release NPK fertilizers prepared by carnauba wax emulsion, starch-based latex and hydrogel nanocomposite combination. Sci. Rep., 13, 11118. https://doi.org/10.1038/s41598-023-38445-7
Mwendwa S (2022). Revisiting soil texture analysis: Practices towards a more accurate Bouyoucos method. Heliyon. 8, e09395 https://doi.org/10.1016/j.heliyon.2022.e0 9395
Narjary, B., & Aggarwal, P. (2014) Evaluation of soil physical quality under amendments and hydrogel applications in a soybean–wheat cropping system. Commun Soil Sci Plant Anal. 45,1167-1180. https://doi.org/10.1080/00103624.2013.875191Nelson, D. W., &, Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S., Pal, P., Bam, N., Biswas, B., & Barek, V. (2022) Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. Int. J. Polym. Sci. 2022,491-4836 https://doi.org/10.1155/2022/4914836
Rajanna, G., Manna, S., Singh, A., Babu, S., Singh, V., Dass, A., Chakraborty, D., Patanjali , N., Chopra, I., & Banerjee, T. (2022) Biopolymeric superabsorbent hydrogels enhance crop and water productivity of soybean–wheat system in Indo-Gangetic plains of India. Sci. Rep.12,11-55 https://doi.org/10.1038/s41598-022-16049-x
Susha Lekshmi, Singh D.N, Shojaei, & Baghini, M. (2014). A critical review of soil moisture measurement. Measurement; 54, 92-105.
Sharma, N., Singh, A., & Dutta, R.K. (2021) Biodegradable fertilizer nanocomposite hydrogel based on poly (vinyl alcohol)/kaolin/diammonium hydrogen phosphate (DAhP) for controlled release of phosphate. Polym. Bull.78,2933-2950 https://doi.org/10.1007/s00289-020-03252-x
Singh, A., Rajput, V.D., Pandey, D., Sharma, R., Ghazaryan, K., & Minkina, T. (2023) Nano zinc-enabled strategies in crops for combatting zinc malnutrition in human health. Front. Biosci. 28,1-58 https://doi.org/10.31083/j.fbl2808158
Skrzypczak, D., Mikula, K., Kossińska, N., Widera, B., Warchoł, J., Moustakas, K., Chojnacka, K., &, Witek-Krowiak, A. (2020) Biodegradable hydrogel materials for water storage in agriculture-review of recent research. J. Sci. Commun..194,324-332 https://doi.org/10.5004/dwt.2020.25436
Skrzypczak, D., Mikula, K., Kossińska, N., Widera, B., Warchoł, J., Moustakas, K., Chojnacka, K.& Witek-Krowiak, A. (2020). Biodegradable hydrogel materials for water storage in agriculture-review of recent research. J. Sci. Commun., 194, 324-332. https://doi.org/10.5004/dwt.2020.25436
Tang, Y., Zhao, W., Zhu, G., Tan, Z., Huang, L., Zhang, P., Gao, L., & Rui, Y. (2023) Nano-pesticides and fertilizers: solutions for global food security. Nanomater. 14,90 https://doi.org/10.3390/nano14010090
Teng, B., Wu, J., Zhong, Y., Cai, L., Qi, P., & Luo, Z. (2024) Enhancing Drought Tolerance in Barley through the Application of Watermelon Rind Hydrogels: A Novel Approach to Sustainable Agriculture. Agronomy 14,23-29 https://doi.org/10.3390/agronomy14102329
Ur, Rahim, H., Qaswar, M., Uddin, M., Giannini, C., Herrera, ML., & Rea, G. (2021) Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomater. 11,20-68 https://doi.org/10.3390/nano11082068
Wang, J.J., Provin, T., & Zhang, H. (2014) Measurement of soil salinity and sodicity. Soil test methods from the southeastern United States; 185.
Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C., & Neue, H. U. (2000). A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol. Fertil. Soils, 30, 510-519. https://doi.org/10.1007/s003740050030
Section
Research Articles

How to Cite

Enhancing drought resilience and sustainability in Solanum lycopersicum L cultivation: Synergistic effects of nano-fertilizer and hydrogels. (2025). Journal of Applied and Natural Science, 17(2), 753-759. https://doi.org/10.31018/jans.v17i2.6560