Article Main

Hussein Riyadh Abdul Kareem Al-Hetty Rana Salim Farhan Fatimah Abdulazeez Awad Eman Naji Saleh

Abstract

Arabic Gum is a soluble dietary fiber with important biological properties and is effectively used to improve the immune system. It promotes the growth of beneficial bacteria in the gut (probiotics), is considered a digestive enhancer, and is also known to help strengthen the immune system. Some research has indicated its anti-inflammatory and immunomodulatory properties. This study investigated the effects of Arabic gum extract on the immune response and weight variation in Swiss albino mice. The Swiss albino rats were divided into five groups as follows: the group one was considered control (T0, untreated), the group two (T1) was given 30 mg/kg arabic gum + ovalbumin (0.1 ml), the group three (T2) was given 60 mg/kg arabic gum + ovalbumin (0.1 ml), the fourth group (T3) was given 90 mg/kg arabic gum + ovalbumin (0.1 ml), and finally the fifth group (T4, standard)  was given ovalbumin (0.1 ml) alone. The maximum concentration (90mg/kg) led to consistent gain of weight implying a potential positive immunomodulatory effect or metabolic increase. Arabic gum extract showed potent neutrophil count in a dose dependent fashion, implying that Arabic gum extract caused an improved innate immune response, Arabic gum extract portrayed
potent immunomodulatory effect, whereby it reduced oedema volume dose dependently, indicating anti-inflammatory effects . This study suggests that Arabic gum extract has the potential to modulate the immune response and exert anti-inflammatory effects in Swiss albino mice. Further research is needed to explore the mechanisms of action and potential clinical applications.


 

Article Details

Article Details

Keywords

Anti-inflammatory, Arabic gum, Immune response, Neutrophils inflammation, Swiss albino mice

References
Abu-Serie, M. M., Hamouda, A. F., & Habashy, N. H. (2021). Acacia senegal gum attenuates systemic toxicity in CCl4-intoxicated rats via regulation of the ROS/NF-κB signaling pathway. Scientific Reports, 11(1), 20316. https://doi.org/10.1038/s41598-021-99953-y
Ahmed, A. A., Essa, M. E. A., Mollica, A., Stefanucci, A., Zengin, G., & Ahmed, H. (2021). Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. Bioactive Carbohydrates and Dietary Fibre, 25, 100258.‏ https://doi.org/10.1016/j.bcdf.2020.100258
Al-Hamayda, A., Abu-Jdayil, B., Ayyash, M., & Tannous, J. (2023). Advances in microencapsulation techniques using Arabic gum: A comprehensive review. Industrial Crops and Products, 205, 117556.‏ https://doi.org/10.1016/j.indcrop.2023.117556
Al-Baadani, H. H., Al-Mufarrej, S. I., Al-Garadi, M. A., Alhidary, I. A., Al-Sagan, A. A., & Azzam, M. M. (2021). The use of gum Arabic as a natural prebiotic in animals: A review. Animal Feed Science and Technology, 274, 114894.‏https://doi.org/10.1016/j.anifeedsci.2021.114894
Ali, B. H., Al-Husseni, I., Beegam, S., Al-Shukaili, A., Nemmar, A., Schierling, S., Queisser, N., & Schupp, N. (2013). Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PloS one, 8(2), e55242. https://doi.org/10.1371/journal.pone.0055242
Ali, B. H., Beegam, S., Al-Lawati, I., et al. (2013). Comparative efficacy of three brands of gum acacia on adenine-induced chronic renal failure in rats. Physiological Research, 62(1), 47–56. DOI: 10.33549/physiolres.932383.
Ashour, M. A., Fatima, W., Imran, M., Ghoneim, M. M., Alshehri, S., & Shakeel, F. (2022). A Review on the Main Phytoconstituents, Traditional Uses, Inventions, and Patent Literature of Gum Arabic Emphasizing Acacia seyal. Molecules (Basel, Switzerland), 27(4), 1171. https://doi.org/10.3390/molecules27041171
Babiker, R., Kaddam, L., & Mariod, A. (2022). The role of gum Arabic as an anti-inflammatory, antioxidant, and immune modulator in COVID-19: A review. Functional Food Science-Online ISSN: 2767-3146, 2(10), 242-257.‏ https://doi.org/10.31989/ffs.v2i10.1019
Bai, M., Wang, Y., Han, R., Xu, L., Huang, M., Zhao, J., Lin, Y., Song, S., & Chen, Y. (2021). Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. The Journal of nutritional biochemistry, 87, 108493. https://doi.org/10.1016/j.jnutbio.2020.108493
Baien, S. H., Seele, J., Henneck, T., Freibrodt, C., Szura, G., Moubasher, H., Nau, R., Brogden, G., Mörgelin, M., Singh, M., Kietzmann, M., von Köckritz-Blickwede, M., & de Buhr, N. (2020). Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli. Frontiers in immunology, 10, 3119. https://doi.org/10.3389/fimmu.2019.03119
Barkeer, S., Pothuraju, R., Malakar, P., Pimentel, T. C., Siddiqui, J. A., & Nair, S. A. (2024). Gum acacia dietary fiber: Significance in immunomodulation, inflammatory diseases, and cancer. Phytotherapy Research: PTR, 38(3), 1509–1521. https://doi.org/10.1002/ptr.8125
Brummer, Y., Cui, W., & Wang, Q. (2003). Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocolloids, 17(3), 229-236.‏ https://doi.org/10.1016/S0268-005X(02)00054-1
Cox, S., Sandall, A., Smith, L., Rossi, M., & Whelan, K. (2021). Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutrition Rviews, 79(6), 726–741. https://doi.org/10.1093/nutrit/nuaa038
Gamal el-din, A. M., Mostafa, A. M., Al-Shabanah, O. A., Al-Bekairi, A. M., & Nagi, M. N. (2003). Protective effect of arabic gum against acetaminophen-induced hepatotoxicity in mice. Pharmacological Research, 48(6), 631–635. https://doi.org/10.1016/s1043-6618(03)00226-3
Gouda, E., & Babiker, F. (2022). Gum Arabic protects the rat heart from ischemia/reperfusion injury through anti-inflammatory and antioxidant pathways. Scientific Reports, 12(1), 17235. https://doi.org/10.1038/s41598-022-22097-0
Ibrahim, R. M., Abdelhafez, H. M., El-Shamy, S. A. E., Eid, F. A., & Mashaal, A. (2023). Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Scientific reports, 13(1), 5005. https://doi.org/10.1038/s41598-023-31897-x
Kim, Y., Yang, H. I., & Kim, K. S. (2023). Etiology and Pathogenesis of Rheumatoid Arthritis-Interstitial Lung Disease. International Journal of Molecular Sciences, 24(19), 14509. https://doi.org/10.3390/ijms241914509
Lee, J., Kim, J., Moon, C., Kim, S. H., Hyun, J. W., Park, J. W., & Shin, T. (2008). Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytotherapy Research : PTR, 22(12), 1677–1681. https://doi.org/10.1002/ptr.2562 ‏
Küçükkatırcı Baykan, H., Öner, N., & Lekesizcan, A. (2024). Effects of Krill Oil and Coconut Oil on Behavioral Changes and Inflammatory Markers in Rats with Chronic Unpredictable Mild Stress Induced Depression Model. Journal of Medicinal Food, 27(12), 1243-1252.‏ https://doi.org/10.1089/jmf.2024.0035
Li, G., Kolan, S. S., Guo, S., Marciniak, K., Kolan, P., Malachin, G., Grimolizzi, F., Haraldsen, G., & Skålhegg, B. S. (2021). Activated, Pro-Inflammatory Th1, Th17, and Memory CD4+ T Cells and B Cells Are Involved in Delayed-Type Hypersensitivity Arthritis (DTHA) Inflammation and Paw Swelling in Mice. Frontiers in Immunology, 12, 689057. https://doi.org/10.3389/fimmu.2021.689057
Liu, J., Song, S., Zhao, R., Zhang, H. Y., & Zhang, S. X. (2023). The functions and networks of non-coding RNAs in the pathogenesis of Rheumatoid Arthritis. Biomedicine & Pharmacotherapy, 163, 114707. https://doi.org/10.1016/j.biopha.2023.114707
Liu, J., Zhong, Y., Luo, X. M., Ma, Y., Liu, J., & Wang, H. (2021). Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice. Frontiers in Nutrition, 8, 784681. https://doi.org/10.3389/fnut.2021.784681
Lopez-Torrez, L., Nigen, M., Williams, P., Doco, T., & Sanchez, C. (2015). Acacia senegal vs. Acacia seyal gums–Part 1: Composition and structure of hyperbranched plant exudates. Food Hydrocolloids, 51, 41-53.‏https://doi.org/10.1016/j.foodhyd.2015.04.019.
McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. The New England journal of medicine, 365(23), 2205–2219. https://doi.org/10.1056/NEJMra1004965
Morsi, D. S., El-Nabi, S. H., Elmaghraby, M. A., Abu Ali, O. A., Fayad, E., Khalifa, S. A. M., El-Seedi, H. R., & El-Garawani, I. M. (2022). Anti-proliferative and immunomodulatory potencies of cinnamon oil on Ehrlich ascites carcinoma bearing mice. Scientific reports, 12(1), 11839. https://doi.org/10.1038/s41598-022-14770-1
Naushad, M., Sharma, G., Alothman, Z. A. (2019). Photodegradation of toxic dye using Gum Arabic-crosslinked-poly (acrylamide)/Ni (OH) 2/FeOOH nanocomposites hydrogel. Journal of Cleaner Production, 241, 118263. DOI: https://doi.org/10.1016/j.jclepro.2019.118263.
Nemmar, A., Al-Salam, S., Beegam, S., Yuvaraju, P., & Ali, B. H. (2019). Gum Arabic Ameliorates Impaired Coagulation and Cardiotoxicity Induced by Water-Pipe Smoke Exposure in Mice. Frontiers in Physiology, 10, 53. https://doi.org/10.3389/fphys.2019.00053
Peng, Y., Huang, Y., Li, H., Li, C., Wu, Y., Wang, X., Wang, Q., He, J., & Miao, C. (2024). Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microbial Pathogenesis, 188, 106563. https://doi.org/10.1016/j.micpath.2024.106563
Pitkänen, L., , Heinonen, M., , & Mikkonen, K. S., (2018). Safety considerations of plant polysaccharides for food use: a case study on phenolic-rich softwood galactoglucomannan extract. Food & Function, 9(4), 1931–1943. https://doi.org/10.1039/c7fo01425b.
Razavi, S. M., Mortazavi, S. A., Matia‐Merino, L., Hosseini‐Parvar, S. H., Motamedzadegan, A., & Khanipour, E. (2009). Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). International Journal of Food Science & Technology, 44(9), 1755-1762.‏ https://doi.org/10.1111/j.1365-2621.2009.01993.x
Saha, M. R., & Dey, P. (2024). Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota. Archives of Physiology and Biochemistry, 130(1), 70–86. https://doi.org/10.1080/13813455.2021.1966475
Siednamohammeddeen, N., Badi, R., Mohammeddeen, T., Enan, K., & AmalSaeed (2022). The effect of gum Arabic supplementation on cathelicidin expression in monocyte derived macrophages in mice. BMC Complementary Medicine and Therapies, 22(1), 149. https://doi.org/10.1186/s12906-022-03627-9
Smith, J. B., & Haynes, M. K. (2002). Rheumatoid arthritis—a molecular understanding. Annals of Internal Medicine, 136(12), 908-922.‏ https://doi.org/10.7326/0003-4819-136-12-200206180-00012
Tang, W., Luo, X., Fan, F., Sun, X., Jiang, X., Li, P., Ding, J., Lin, Q., Zhao, S., Cheng, Y., & Fang, Y. (2024). Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food & Function, 15(19), 9972–9982. https://doi.org/10.1039/d4fo02572e
Ushida, K., Hatanaka, H., Inoue, R., Tsukahara, T., & Phillips, G. O. (2011). Effect of long term ingestion of gum arabic on the adipose tissues of female mice. Food Hydrocolloids, 25(5), 1344-1349. https://doi.org/10.1016/j.foodhyd.2010.12.010
Yang, Q., Su, S., Luo, N., & Cao, G. (2024). Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Renal Failure, 46(1), 2336128. https://doi.org/10.1080/0886022X.2024.233 6128.‏
Yang, Y. L., Li, X. F., Song, B., Wu, S., Wu, Y. Y., Huang, C., & Li, J. (2023). The Role of CCL3 in the Pathogenesis of Rheumatoid Arthritis. Rheumatology and Therapy, 10(4), 793–808. https://doi.org/10.1007/s40744-023-00554-0
Section
Research Articles

How to Cite

Modulating the immune response in Swiss albino mice using Arabic gum (Acacia). (2025). Journal of Applied and Natural Science, 17(4), 1471-1479. https://doi.org/10.31018/jans.v17i4.6557