Ultrasound-assisted extraction of Nigella sativa L essential oil using green solvent and its encapsulation in albumin nanoparticles
Article Main
Abstract
The abundance of numerous bioactive compounds with a range of therapeutic benefits primarily distinguishes medicinal and aromatic plants. Nigella sativa (black cumin) is a medicinal plant species that has been well known for a variety of therapeutic uses. Health-conscious people, researchers, and the pharmaceutical industry are becoming more interested in black cumin, a highly valued nutraceutical herb with numerous health advantages. The present study evaluated the impact of both traditional and advanced extraction techniques on the chemical composition and bioactive properties of essential oils extracted from Nigella sativa L.seeds. Hexane and petroleum ether were the solvents used for conventional extraction, while natural deep eutectic solvents (NADES) were used for ultrasonic extraction. Ultrasonic extraction addresses the drawbacks of traditional solvent extraction.The hydrophobic properties of essential oils restrict their use in therapeutic settings. The essential oil extract encapsulated in albumin nanoparticles resolves this bottleneck. The results showed that NADES extraction enabled higher yields (37.1%) than essential oils obtained after Soxhlet extraction. Further, functional groups associated with the active ingredients with therapeutic activity were identified by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Different chemical components with identified bioactivities were determined by the Gas Chromatography/Mass Spectrometry chromatograms (GC-MS). The yield (85 %) and extract trapping (89 %) in albumin nanoparticles were determined. The findings demonstrated that the average size of albumin nanoparticles grew from 72 nm to 102 nm for two distinct drug-loading procedures. The findings of the Scanning electron microscope (SEM) supported the spherical shape of the nanoparticles.The study will help Nigella extract loaded albumin nanoparticles to incorporate essential oil (EO) in food formulations and pharmaceutical preparations.
Article Details
Article Details
Albumin nanoparticle, Encapsulation, Essential oil, Ultrasonic extraction
AOCS. (2004). Official methods and recommended practices of the American Oil Chemists’ Society. AOCS Publishing.
Atta, M. B. (2003). Some characteristics of Nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chemistry, 83, 63–68. https://doi.org/10.1016/S0308-8146(03)00038-4
Badri, W., El Asbahani, A., Miladi, K., Baraket, A., Agusti, G., Nazari, Q. A., & Elaissari, A. (2018). Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 46, 234–242. https://doi.org/10.1016/j.jddst.2018.05.022
Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwartz, A., Joel, D. M., Lev, E., Fait, A., & Lewinsohn., E. (2012). Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules, 17(9), 10159–10177. https://doi.org/10.3390/molecules170910159
Chen, Z., Wu, K., Zhu, W., Wang, Y., Su, C., & Yi, F. (2022). Chemical compositions and bioactivities of essential oil from perilla leaf (Perillae Folium) obtained by ultrasonic-assisted hydro-distillation with natural deep eutectic solvents. Food Chemistry, 375, 131834. https://doi.org/10.1016/j.foodchem.2021.131834
Choi, Y. H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W., & Verpoorte, R. (2011). Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiology, 156(4), 1701–1705. https://doi.org/10.1104/pp.111.178426
Choudhury, M. S., Islam, M. N., Khan, M. M., Ahiduzzaman, M., Masum, M. M. I., & Ali, M. A. (2023). Effect of extraction methods on physical and chemical properties and shelf life of black cumin (Nigella sativa L.) oil. Journal of Agriculture and Food Research, 14, 100836. https://doi.org/10.1016/j.jafr.2023.100836
Dalli, M., Azizi, S. E., Kandsi, F., & Gseyra, N. (2021). Evaluation of the in vitro antioxidant activity of different extracts of Nigella sativa L. seeds, and the quantification of their bioactive compounds. Materials Today: Proceedings, 45, 7259-7263. https://doi.org/10.1016/j.matpr.2020.12.743
Dar, I. H., Junaid, P. M., Ahmad, S., Shams, R., Dash, K. K., Shaikh, A. M., & Béla, K. (2024). Optimization of ultrasound-assisted extraction of Nigella sativa seed oil for enhancement of yield and antioxidant activity. Discover Applied Sciences, 6(3), 104. | https://doi.org/10.1007/s42452-024-05714-7
Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 157, 168–82. https://doi.org/10.1016/j.jconrel.2011.07.031
Farhan, N., Salih, N., & Salimon, J. (2021). Physiochemical properties of Saudi Nigella sativa L.(‘Black cumin’) seed oil. OCL, 28(11), 1–9.
https://doi.org/10.1051/ocl/2020075
Fatmi, S., Taouzinet, L., Lezreg, A., Pokajewicz, K., Toutou, Z., Skiba, M., & Iguerouada, M. (2024). Advances and Trends in the Encapsulation of Nigella sativa Oil and Essential Oil Using Cyclodextrins and Liposomes: a Review. BioNanoScience, 1–18. https://doi.org/10.1007/s12668-024-01463-4
Firestone, D. (2005). AOAC. In Association of the Official Analytical Chemists.
Honary, S., Jahanshahi, M., Golbayani, P., Ebrahimi, P., & Ghajar, K. (2010). Doxorubicin-loaded albumin nanoparticles: formulation and characterization. Journal of Nanoscience and Nanotechnology, 10(11), 7752–7757. https://doi.org/10.1166/jnn.2010.2832
Ismail, A. F. H., Mohamed, F., Mansor, N., Shafri, M. A. M., & Yusof, F. A. (2015). Method development and validation using UV spectrophotometry for Nigella sativa oil microparticles quantification. Journal of Applied Pharmaceutical Science, 5(9), 082-088. DOI: 10.7324/JAPS.2015.50915
Jithan, A. V, Madhavi, K., Madhavi, M., & Prabhakar, K. (2011). Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. International Journal of Pharmaceutical Investigation, 1(2), 119–125. doi: 10.4103/2230-973X.82432
Karami, K., Jamshidian, N., Hajiaghasia, A., & Amirghofran, Z. (2020). BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New Journal of Chemistry, 44(11), 4394–4405.https://doi.org/10.1039/C9NJ05847H
Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., Shahreza, S., Sori, M., & Hamblin., M. R. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 13(11), 1609–1623. https://doi.org/10.1080/17425247.2016.1193149
Khoddami, A., Ghazali, H. M., Yassoralipour, A., Ramakrishnan, Y., & Ganjloo, A. (2011). Physicochemical characteristics of Nigella seed (Nigella sativa L.) oil as affected by different extraction methods. Journal of the American Oil Chemists’ Society, 88, 533–540. https://doi.org/10.1007/s11746-010-1687-6
Liu, X., M., Abd El-Aty, A., & Shim, J. H. (2011). Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds. Mini Reviews in Medicinal Chemistry, 11(11), 947–955. https://doi.org/10.2174/138955711797068472
Maideen, N. M. P., Hadda, T. B., Almalki, F. A., Laarousi, H., Soliman, S. S., & Kawsar, S. (2023). Black seeds (Nigella sativa) for the management of dengue viral disease: insight into the evidence and POM analyses for the identification of antiviral pharmacophore sites: a review. Journal of Medicinal Herbs, 14(1), 19–36. https://doi.org/10.30495/medherb.2023.702425
Manjunath, N. S., Rangaswamy, B. E., Hafsa, J., Ganavi, D., Sahana, J. K., & Ullas, K. (2020). Evaluation of Nigella sativa (Black cumin) for anticancer and anti-inflammatory activities. International Journal of Herbal Medicine, 8(5), 01–09.
Mehariya, S., Fratini, F., Lavecchia, R., & Zuorro, A. (2021). Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 9(5), 105989. https://doi.org/10.1016/j.jece.2021.105989
Merodio, M., Arnedo, A., Renedo, M. J., & Irache, J. M. (2001). Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. European Journal of Pharmaceutical Sciences, 12(3), 251–259. https://doi.org/10.1016/S0928-0987(00)00169-X
Niu, Y., Wang, B., Zhou, L., Ma, C., Waterhouse, G. I., Liu, Z., & Kang, W. (2021). Nigella sativa: A dietary supplement as an immune-modulator on the basis of bioactive components. Frontiers in Nutrition, 8, 722813. https://doi.org/10.3389/fnut.2021.722813
Rahimnejad, M., Najafpour, G., & Bakeri, G. (2012). Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 412, 96–100. https://doi.org/10.1016/j.colsurfa.2012.07.022
Saadat, S., Aslani, M. R., Ghorani, V., Keyhanmanesh, R., & Boskabady, M. H. (2021). The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytotherapy Research, 35(6), 2968–2996. https://doi.org/10.1002/ptr.7003
Sadeghzadeh, F., Haghighi, H. N., Ghiyamati, M., Hajizadenadaf, F., & Tabrizi, H. M. (2023). In vitro and in vivo study on the anticancer efects of anethole-loaded bovine serum albumin nanoparticles surface decorated with chitosan and folic acid. Cancer Nanotechnology, 14(24), 1–15. https://doi.org/10.1186/s12645-023-00181-y
Setiawatie, E. M., Gani, M. A., Rahayu, R. P., Ulfah, N., Kurnia, S., Augustina, E. F., & Sari, D. S. (2022). Nigella sativa toothpaste promotes anti-inflammatory and anti-destructive effects in a rat model of periodontitis. Archives of Oral Biology, 137, 105396. https://doi.org/10.1016/j.archoralbio.2022.105396
Shad, K. F., Soubra, W., & Cordato, D. J. (2021). The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clinical and Experimental Pharmacology and Physiology, 48(11), 1445–1453. https://doi.org/10.1111/1440-1681.13553
Shafodino, F. S., Lusilao, J. M., & Mwapagha, L. M. (2022). Phytochemical characterization and antimicrobial activity of Nigella sativa seeds. PloS One, 17(8), e0272457.https://doi.org/10.1371/journal.pone.0272457
Sharma, M., Arokiyaraj, C., Rana, S., Sharma, U., & Reddy, S. E. (2023). Natural deep eutectic solvents (NADESs) assisted extraction of essential oil from Nardostachys jatamansi (D. Don) DC with insecticidal activities. Industrial Crops and Products, 202, 117040. https://doi.org/10.1016/j.indcrop.2023.117040
Singh, V., & Chaudhary, A. K. (2010). Development and Characterization of Rosiglitazone Loaded Gelatin Nanoparticles Using Two Step Desolvation Method. International Journal of Pharmaceutical Sciences Review and Research, 5(1), 100–103.
Solati, Z., Baharin, B. S., & Bagheri, H. (2014). Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. Journal of the American Oil Chemists’ Society, 91(2), 295–300. https://doi.org/10.1007/s11746-013-2362-5
Tan, Y. L., & Ho, H. K. (2018). Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov Today, 23, 1108–14. https://doi.org/10.1016/j.drudis.2018.01.051
Tao, C., Chuah, Y. J., Xu, C., & Wang, D. A. (2019). Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. Journal of Materials Chemistry B, 7(3), 357–367.https://doi.org/10.1039/C8TB02477D
Telci, İ., Özek, T., Demirtaş, İ., Özek, G., Yur, S., Ersoy, S., & Karakurt, Y. (2023). Studies on black cumin genotypes of Turkiye: Agronomy, seed and thymoquinone yields. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100494. https://doi.org/10.1016/j.jarmap.2023.100494
Xiong, K., & Chen, Y. (2020). Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chemical Engineering Research and Design, 164, 412-423. https://doi.org/10.1016/j.cherd.2020.09.032
Yingngam, B., Brantner, A., Treichler, M., Brugger, N., Navabhatra, A., & Nakonrat, P. (2021). Optimization of the eco-friendly solvent-free microwave extraction of Limnophila aromatica essential oil. Industrial Crops and Products, 165, 113443. https://doi.org/10.1016/j.indcrop.2021.113443
Yulianita, Z. R., & Monica., H. R. (2023). Screening and Optimization Method of Natural Deep Eutectic Solvent Extracts from Phyllanthus niruri by Ultrasonic-Assisted Extraction. Research Journal of Pharmacy and Technology, 16(11), 5213–5217. https://doi.org/10.52711/0974-360X.2023.00845.
Zhao, D., Zhao, X., Zu, Y., Li, J., Zhang, Y., Jiang, R., & Zhang, Z. (2010). Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. International Journal of Nanomedicine, 669–677. https://doi.org/10.2147/IJN.S12918
Zouirech, O., Alyousef, A. A., El Barnossi, A., El Moussaoui, A., Bourhia, M., & Salamatullah, A. M., Derwich, E. (2022). Phytochemical analysis and antioxidant, antibacterial, and antifungal effects of essential oil of black caraway (Nigella sativa L.) seeds against drug‐resistant clinically pathogenic microorganisms. BioMed Research International, 1(5218950). https://doi.org/10.1155/2022/5218950

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)